首页> 外文学位 >Transient liquid phase bonding of a third generation gamma-titanium aluminum alloy: Gamma Met PX.
【24h】

Transient liquid phase bonding of a third generation gamma-titanium aluminum alloy: Gamma Met PX.

机译:第三代γ-钛铝合金的瞬时液相键合:Gamma Met PX。

获取原文
获取原文并翻译 | 示例

摘要

The research work presented here discusses transient liquid phase (TLP) bonding of a current (i.e. third) generation gamma-TiAl alloy known as Gamma Met PX (GMPX). Effective implementation of GMPX in service is likely to require fabrication of complicated geometries for which a high performance metallurgical joining technique must be developed. Although a number of joining processes have been investigated, all have significant disadvantages that limit their ability to achieve sound joints.; TLP bonding has proved to be a successful method of producing joints with microstructures and compositions similar to that of the bulk substrates. Hence, bonds with parent-like mechanical and oxidation properties are possible.; The interlayer and bonding conditions employed for joining of GMPX were based on successful wide-gap TLP joining trials of an earlier generation cast gamma-TiAl alloy with a composition of Ti-48Al-2Cr-2Nb in atomic percent (abbreviated here to 48-2-2). A composite interlayer consisting of a 6:1 weight ratio (7 vol.% copper) of gas atomized 48-2-2 powders (-270 mesh) and pure copper powders (-325 mesh) was employed. When applied to GMPX, these interlayer ratio and bonding conditions produced undesirable microstructures and poor mechanical performance in as-bonded joints. Thus, modifications to the joining technique were required. Initially these modifications were based purely on empirical and phenomenological studies, however, detailed mechanistic studies of the underlying joining mechanisms were conducted to aid in selecting these modifications. Mechanisms such as diffusion, solubility and wettability of copper in/on GMPX and 48-2-2 bulk substrates were investigated and compared. A difference in solubility of copper in GMPX and 48-2-2 bulk substrates was attributed to (at least in part) to the observed differences in GMPX and 48-2-2 bonds. The copper solubility, at the bonding temperature, in the 48-2-2 and GMPX alloys was determined to be ∼2 at.% and ∼1 at.% respectively. To compensate for the lower copper solubility in GMPX, the copper content of the composite interlayer employed in GMPX bonds was reduced was reduced from an initial ratio of 6:1 to 50:1. GMPX TLP bonds employing a 50:1 weight ratio (1 vol.% copper) of Gamma Met plus copper powders produced joints with a microstructure and room temperature mechanical properties somewhat comparable to the bulk material after bonding. A subsequent post-bond heat treatment produced a bond-line with a microstructure and room temperature mechanical properties similar to those of the bulk material subjected to the same thermal cycle.
机译:此处介绍的研究工作讨论了被称为Gamma Met PX(GMPX)的当前(即第三代)γ-TiAl合金的瞬态液相(TLP)键合。在服务中有效实施GMPX可能需要制造复杂的几何形状,为此必须开发高性能的冶金连接技术。尽管已经研究了许多连接方法,但是所有方法都有明显的缺点,限制了它们实现牢固连接的能力。 TLP粘结已被证明是一种成功的生产接头的方法,该接头的微观结构和成分与块状基材相似。因此,具有类似母体的机械和氧化性质的键是可能的。用于GMPX接合的中间层和接合条件基于成功的较早一代铸造Ti-48Al-2Cr-2Nb原子百分比的铸造γ-TiAl合金的宽间隙TLP接合试验(此处缩写为48-2)。 -2)。使用由气体雾化的48-2-2粉末(-270目)和纯铜粉末(-325目)的重量比为6:1(铜的7体积%)构成的复合中间层。当应用于GMPX时,这些中间层比率和粘结条件会在粘结后的接头中产生不良的微观结构和较差的机械性能。因此,需要修改连接技术。最初,这些修改完全基于经验和现象学研究,但是,对潜在的连接机制进行了详细的机械研究,以帮助选择这些修改。研究并比较了铜在GMPX和48-2-2块状基质中/上的扩散,溶解度和润湿性等机理。铜在GMPX和48-2-2块状基质中溶解度的差异至少部分归因于GMPX和48-2-2键的差异。在48-2-2和GMPX合金中,键合温度下的铜溶解度分别确定为〜2 at。%和〜1 at。%。为了补偿铜在GMPX中的较低溶解度,将GMPX键中使用的复合中间层的铜含量从最初的6:1降低到50:1。使用50:1重量比(1体积%的铜)的Gamma Met加铜粉的GMPX TLP键合产生的接头具有与键合后的松散材料相当的微观结构和室温机械性能。随后的键合后热处理产生的键合线具有与经受相同热循环的散装材料相似的微观结构和室温机械性能。

著录项

  • 作者

    Butts, Daniel A.;

  • 作者单位

    Auburn University.;

  • 授予单位 Auburn University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 235 p.
  • 总页数 235
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:42:02

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号