首页> 外文学位 >Phase field models and simulations of vesicle bio-membranes.
【24h】

Phase field models and simulations of vesicle bio-membranes.

机译:囊泡生物膜的相场模型和模拟。

获取原文
获取原文并翻译 | 示例

摘要

Recently, we begin to systematically study the shape deformation of vesicle membranes by numerical simulations, sometimes under external fluid fields, using a unified energetic variational formulation with phase field methods based on the minimization of elastic bending energy with volume and surface area constraints ([21, 19, 20, 22, 23, 24]). Analysis and numerical methods in both static and dynamic are developed to solve the phase field models.; Phase field approach is a global method, allowing topological changes of the interface. And complex interfaces may be described as a relatively simple phase function within the phase field approach. Compare to other numerical methods, phase field method is more unified, global, and relatively easier for implementation.; First we build the phase field theory for finding the equilibrium vesicle shapes. Theoretically, we build the phase field model for the biological elastic bending energy model. And the consistency of our phase field model with the general sharp interface model is verified. Further, we develop a serial methods including the Euler-Lagrange and penalty constraints methods to solving the phase field model. In guiding the numerical simulations, we prove the convergence of our numerical simulation results to the analytical phase field energy minimizers.; Many simulations are carried out to find the equilibrium shapes of vesicle membranes in the axial symmetrical and the truly 3D cases. Different energetic bifurcation phenomena are discussed. We also plot a relatively complete energy diagram. The effect of the spontaneous curvature is also discussed for both constant and variable cases. In the 3D non-symmetrical case, some non-symmetrical examples are found and compared with biological experiments.; The study of the vesicle transformations within fluid fields is another important contribution of this work. We successfully couple the phase field transformation with the fluid dynamics. Theoretically analysis of the extra stress term caused by the membrane to the fluids is carried out and further compared with the Euler-Lagrangian equation of Willmore's problem. Energy laws within the coupled systems ensure the similar asymptotic limit of the phase field formulation to the equilibrium system. Extensive three dimensional numerical simulations are carried out guiding by a set of numerical schemes for both the phase field transformation and fluid dynamics.; The last contribution of this work is that a series of new formulae is used in detecting the topological changes in vesicle membrane transformations. More important, some of the formulae are developed in a very general frame work and can be applied to other problems and potentially can be used in controlling the structure of vesicle membranes. Numerical simulations are carried out to check those formulae in all kinds of cases involving the topological events.; For biology, this work gives the mathematical simulation to study the physics of vesicle membranes. For mathematics, this work verifies the power of phase field method and further develops this methods by combining with the fluid mechanics and topology.
机译:最近,我们开始通过数值模拟系统地研究囊泡膜的形状变形,有时是在外部流体场下,采用统一的高能变分公式和相场方法,以最小化具有体积和表面积约束的弹性弯曲能为基础[21 ,19,20,22,23,24])。开发了静态和动态分析和数值方法来求解相场模型。相场方法是一种全局方法,允许对接口进行拓扑更改。在相场方法中,复杂的接口可以描述为相对简单的相函数。相较于其他数值方法,相场方法更加统一,全局,易于实施。首先,我们建立相场理论来寻找平衡的囊泡形状。从理论上讲,我们为生物弹性弯曲能量模型建立了相场模型。并验证了我们的相场模型与通用尖锐界面模型的一致性。此外,我们开发了包括Euler-Lagrange和惩罚约束方法在内的一系列方法来求解相场模型。在指导数值模拟时,我们证明了数值模拟结果与解析相场能量最小化器的收敛性。进行了许多模拟以找到在轴向对称和真正3D情况下囊泡膜的平衡形状。讨论了不同的能量分叉现象。我们还绘制了一个相对完整的能量图。还讨论了恒定和可变情况下自发曲率的影响。在3D非对称情况下,找到了一些非对称示例,并与生物学实验进行了比较。对流域内囊泡转化的研究是这项工作的另一个重要贡献。我们成功地将相场变换与流体动力学耦合在一起。从理论上分析了膜对流体造成的额外应力项,并将其与Willmore问题的Euler-Lagrangian方程进行了比较。耦合系统内的能量定律可确保相场公式与平衡系统具有相似的渐近极限。在一组数值方案的指导下,对相场变换和流体动力学进行了广泛的三维数值模拟。这项工作的最后一个贡献是,使用了一系列新公式来检测囊泡膜转化的拓扑变化。更重要的是,某些配方是在非常通用的框架中开发的,可以应用于其他问题,并有可能用于控制囊泡膜的结构。在涉及拓扑事件的各种情况下,进行数值模拟以检查这些公式。对于生物学,这项工作提供了数学模拟来研究囊泡膜的物理学。对于数学而言,这项工作验证了相场法的功效,并结合了流体力学和拓扑学,进一步发展了这种方法。

著录项

  • 作者

    Wang, Xiaoqiang.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 199 p.
  • 总页数 199
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号