首页> 外文学位 >Transverse p x n type thermoelectrics: Type ii superlattices and their thermal conductivity characterization.
【24h】

Transverse p x n type thermoelectrics: Type ii superlattices and their thermal conductivity characterization.

机译:横向x×n型热电体:ii型超晶格及其热导率表征。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation proposes a paradigm for p x n type transverse thermoelectrics, in which the induced heat flow is orthogonal to the applied electric current or conversely, the generated electric field is orthogonal to the applied temperature gradient. p x n type materials have a net p-type Seebeck coefficient in one direction and a net n-type Seebeck coefficient in an orthogonal direction, breaking the symmetry of the Seebeck tensor and inducing a transverse Seebeck coefficient. p x n type transverse hermoelectrics have advantages in microscale devices, cryogenic temperature operations and large temperature difference refrigeration, where the more standard longitudinal thermoelectrics have limited use. The InAs/GaSb type II superlattice is shown to be one candidate pxn type material. In a p x n type material, the anisotropic electron and hole conduction gives rise to a transverse Seebeck coefficient without the need for an external magnetic field. p x n type transverse thermoelectrics can enhance the thermoelectric performance via geometric shaping, so the figure of merit ZT no longer limits the performance of a thermoelectric material. pxn type devices can realize cooling to arbitrarily low temperature with an exponentially tapered cooler, or generating large voltage from a small temperature difference with a meander-shaped generator. The transport tensors and differential heat flow equations are derived, which are different from those of the related Nernst-Ettingshausen effect and stacked synthetic transverse thermoelectrics. The geometric enhancement of p x n type transverse thermoelectric cooling is studied, and the concept of a crossover electric field in an exponentially tapered cooler is introduced to distinguish optimal performance in thin and thick samples. The InAs/GaSb type II superlattice (T2SL) is proposed to be a promising candidate as a pxn type material based on its tunable bandgap and anisotropic electrical conductivity tensor. To estimate its p x n type transverse thermoelectric performance, the Seebeck coefficient and electrical conductivity tensors are calculated. The band structure of T2SL is simulated using 8x8 k˙p envelope function for various InAs and GaSb layer thicknesses. General forms of thermoelectric tensors, including the electrical conductivity tensor and the Seebeck tensor, for 3D, 2D and 1D cases are deduced. The electrical conductivity tensor and Seebeck tensor maps are then calculated via the equations of corresponding cases using the simulated band structure parameters. The transverse thermoelectrics power factor is then optimized for various InAs and GaSb layer thicknesses. Another important thermoelectric property, the thermal conductivity of T2SLs, is experimentally characterized using the 2-wire 3o method. So the calculated Seebeck and electrical conductivity tensors and the measured thermal conductivity tensor of T2SL allow its transverse thermoelectric figure of merit ZT to be estimated. GaAs and AlGaAs thin film and superlattice are first measured to calibrate experimental setup of the 2-wire 3o method. An error analysis method is introduced to calculate the best fit parameters and estimate the error bars of the measurement. The thermal conductivity tensors of related T2SLs are then characterized with the same experimental setup and analysis method. Since these superlattices also have wide application in high-power infrared lasers and photodiodes, the temperature dependent thermal conductivity is used to estimate the temperature distribution in the active region.
机译:本文提出了一种P×n型横向热电的范例,其中感应热流与施加的电流正交,或者相反,产生的电场与施加的温度梯度正交。 p x n型材料在一个方向上具有净p型塞贝克系数,在正交方向上具有净n型塞贝克系数,这破坏了塞贝克张量的对称性并产生了横向塞贝克系数。 p x n型横向热电器件在微型设备,低温温度操作和大温差制冷方面具有优势,而更标准的纵向热电器件的使用受到限制。 InAs / GaSb II型超晶格显示为一种pxn型候选材料。在p x n型材料中,各向异性电子和空穴传导无需外部磁场即可产生横向塞贝克系数。 p x n型横向热电器件可以通过几何整形来增强热电性能,因此品质因数ZT不再限制热电材料的性能。 pxn型设备可以使用指数锥形冷却器实现冷却至任意低温,或者使用曲折形发电机根据较小的温差产生较大的电压。推导了传输张量和差分热流方程,这与相关的Nernst-Ettingshausen效应和堆叠的合成横向热电学方程不同。研究了p x n型横向热电冷却的几何增强,并引入了指数锥形冷却器中的交叉电场的概念,以区分薄样品和厚样品的最佳性能。基于InAs / GaSb II型超晶格(T2SL)的可调带隙和各向异性电导率张量,它被认为是pxn型材料的有前途的候选者。为了估算其p x n型横向热电性能,计算了塞贝克系数和电导率张量。对于各种InAs和GaSb层厚度,使用8×8kp包络函数来模拟T2SL的能带结构。推导了3D,2D和1D情况下热电张量的一般形式,包括电导率张量和塞贝克张量。然后使用模拟的能带结构参数,通过相应情况的方程来计算电导率张量和塞贝克张量图。然后针对各种InAs和GaSb层厚度优化横向热电功率因数。 T2SLs的另一个重要的热电性质是热导率,使用2线3o方法进行了实验表征。因此,计算出的塞贝克和电导率张量以及测得的T2SL的热导率张量可以估算其横向热电品质因数ZT。首先测量GaAs和AlGaAs薄膜和超晶格,以校准2线3o方法的实验设置。引入误差分析方法来计算最佳拟合参数并估计测量的误差线。然后使用相同的实验装置和分析方法对相关T2SL的热导张量进行表征。由于这些超晶格在大功率红外激光器和光电二极管中也有广泛的应用,因此依赖于温度的热导率可用于估算有源区中的温度分布。

著录项

  • 作者

    Zhou, Chuanle.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Electronics and Electrical.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号