首页> 外文学位 >Minority carrier dynamics of type-II indium arsenide/gallium antimonide superlattice photodiodes via optical and electrical characterization.
【24h】

Minority carrier dynamics of type-II indium arsenide/gallium antimonide superlattice photodiodes via optical and electrical characterization.

机译:通过光学和电学表征,II型砷化铟/锑化镓超晶格光电二极管的少数载流子动力学。

获取原文
获取原文并翻译 | 示例

摘要

Semiconductors and the devices made from them are teeming with activity at every moment and in an anthropomorphic way, and can be treated using concepts directly related to living objects. Free carriers, either electrons or holes, in semiconductors have definitive periods of existence before they are annihilated or destroy one another. Thus, the charge carries within a semiconductor material or device do not persist forever and must go from existing to not. The period of carrier existence, carrier lifetime, constitutes subjects of intensive studies worldwide because their understanding guides manipulation of device design with the motive of improving their performance.;From theory, the Type-II superlattice has many distinct features that make it an ideal material system for infrared detection, including its theoretical ability to adjust its carrier lifetime through band engineering. In comparison to the commercially available infrared detectors, the Type-II InAs/GaSb superlattice system grown on GaSb substrates is an attractive alternative because it has good spatial uniformity and the ability to tune the cut-off wavelength from 3-to-32 mum. In addition, through band engineering it is possible to modify the internal carrier lifetimes and thus achieve higher performance, since the lifetime is the fundamental limitation within any semiconductor.;In this work, the techniques to study the internal carrier dynamics of the Type-II InAs/GaSb superlattice will be discussed, as well as how the structure of the photodiode can be modified for improved performance. Through optical and electrical characterization, the current limitations that face this material system can be revealed. The use of a phase-sensitive lock-in technique, in conjunction with a Fourier transform spectrometer based photoluminescence has become routine for samples with bandgaps up to 25 mum. Studying the emission properties of the positive and negative electroluminescence lead to a deeper understanding of the recombination mechanisms within the superlattice photodiodes. By studying the novel phenomenon known as negative luminescence, internal carrier dynamics of both MWIR and LWIR superlattice photodiodes were modeled. In addition, this work demonstrated the negative luminescence phenomenon with high efficiency for MWIR diodes beyond room temperature and currently the longest negative luminescence in III-V materials. Adapting the capacitance-voltage measurement to InAs/GaSb SLS photodiodes, it has been shown that the residual background impurity concentration is measured to be below 1015 cm-3. Furthermore, by introducing the dopants into the i-region of p-i-n photodiode architecture, the contribution of the different dark current mechanisms can be varied to modify the device performance.;The information obtained from the luminescence and electrical results has shown that by changing the minority carrier type from holes to electrons, the detector performance can be significantly enhanced. Changing the minority carrier type, in addition to improving the photodiode active region thickness, has significantly improved the overall signal-to-noise ratio of the photon detectors based on the InAs/GaSb superlattice material system. Finally, by improving the overall device architecture to incorporate a well-aligned double heterojunction, the dark current was further reduced, while simultaneously improving the photo-response. This has allowed the overall device performance, as shown by the detectivity, to become background limited at higher temperatures with dark current values similar to those previously achieved only by HgCdTe. Therefore, this work will show that by gaining greater insight into the internal workings of the photodiode formed by using the antimonide-superlattice has allowed for IR detectors spanning the range from the MWIR-to-VLWIR to have significantly improved performance in comparison to previously achieved results.
机译:半导体及其制造的设备随时随地都以拟人化的方式充满着活动,可以使用与生命物体直接相关的概念进行处理。半导体中的自由载流子(电子或空穴)在被消灭或互相毁灭之前具有确定的生存期。因此,在半导体材料或器件内携带的电荷不会永远存在,而必须从现有电荷转移到没有电荷。载体的存在期,即载体的寿命,构成了世界范围内深入研究的主题,因为他们的理解指导了器件设计的操纵以及提高其性能的动机。从理论上讲,II型超晶格具有许多与众不同的特征,使其成为理想的材料。红外检测系统,包括其通过波段工程调整载流子寿命的理论能力。与市售红外探测器相比,在GaSb衬底上生长的II型InAs / GaSb超晶格系统是一种有吸引力的替代方案,因为它具有良好的空间均匀性,并且能够将截止波长从3调整到32微米。另外,通过频带工程,可以修改内部载流子寿命,从而获得更高的性能,因为寿命是任何半导体内部的基本限制。在这项工作中,研究II型内部载流子动力学的技术将讨论InAs / GaSb超晶格,以及如何修改光电二极管的结构以提高性能。通过光学和电气特性,可以揭示该材料系统面临的电流限制。对于带隙最大为25μm的样品,使用相敏锁定技术与基于傅立叶变换光谱仪的光致发光相结合已成为常规。研究正负电致发光的发射特性导致人们对超晶格光电二极管内的复合机理有更深入的了解。通过研究称为负发光的新现象,对MWIR和LWIR超晶格光电二极管的内部载流子动力学进行了建模。此外,这项工作还证明了室温下MWIR二极管具有高效率的负发光现象,是目前III-V材料中最长的负发光现象。使电容电压测量值适合InAs / GaSb SLS光电二极管,已显示出残留背景杂质浓度被测量为低于1015 cm-3。此外,通过将掺杂剂引入pin光电二极管架构的i区域,可以改变不同暗电流机制的贡献,从而改变器件性能。;从发光和电学结果获得的信息表明,通过改变少数从空穴到电子的载流子类型,探测器的性能都可以大大提高。改变少数载流子类型,除了提高光电二极管有源区的厚度外,还显着提高了基于InAs / GaSb超晶格材料系统的光子探测器的总体信噪比。最终,通过改善整体器件架构并结合排列良好的双异质结,可以进一步降低暗电流,同时改善光响应。如检测率所示,这已使整个设备的性能在较高温度下变为背景限制,其暗电流值类似于以前仅由HgCdTe实现的暗电流值。因此,这项工作将表明,通过更深入地了解使用锑化超晶格形成的光电二极管的内部工作原理,红外检测器的范围从MWIR到VLWIR,与以前实现的性能相比有了显着提高结果。

著录项

  • 作者

    Hoffman, Darin Michael.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 375 p.
  • 总页数 375
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号