首页> 外文学位 >An Exploration of GaN-based Heterojunction Bipolar Transistors.
【24h】

An Exploration of GaN-based Heterojunction Bipolar Transistors.

机译:GaN基异质结双极晶体管的探索。

获取原文
获取原文并翻译 | 示例

摘要

In this work, the exploration of GaN based Heterojunction Bipolar Transistors (HBTs) is presented. The material properties of GaN, specifically, the high critical electric field for breakdown and the high electron saturation velocity combined with the merits of an HBT such as high transconductance, normally-off operation, high power density, uniform threshold voltage, etc. make GaN HBTs attractive for high frequency and high power applications.;AlGaN/GaN HBTs structures grown by MOCVD typically have a problem of Mg diffusion from the base into the emitter layers during growth, resulting in a Mg concentration tail in the emitter layer. To circumvent this problem, Ga-polar AlGaN/GaN HBTs grown by MOCVD with Regrown Emitters were fabricated. The HBTs had a high current density with good current gain. However, the fabrication of these devices revealed a problem of effectively activating the p-type GaN base layer buried underneath the emitter layer. Ammonia Molecular Beam Epitaxy (NH3 MBE) is attractive as an alternate method for the growth of GaN HBTs and other vertical devices. Chief benefits include sharp Mg concentration profiles, absence of Ga-filled dislocations that can cause vertical leakage currents, and active p-type layers. AlGaN/GaN HBTs grown by NH3 MBE are demonstrated. To obtain good ohmic contacts to the base layer, devices were fabricated with two different processes involving regrowths---Regrown base contact and Regrown emitter. HBTs with high current density and current gain were obtained by both processes and the results are discussed. High base resistance is found to limit the performance of the devices.;InGaN layers doped with Mg are a better option compared to GaN as the base layer of the HBT. Due to higher ionization efficiency of Mg in InGaN than GaN, higher hole concentrations can be obtained in p-type InGaN layers. GaN/InGaN/GaN HBTs with Common-Emitter operation and good collector current densities are demonstrated. Recombination of electrons at the emitter sidewalls and extrinsic base surface due to ion etch-damage is found to lower the current gain. A photoelectrochemical (PEC) etch treatment is found to enhance device performance and is discussed.;High hole concentrations can be obtained in graded AlGaN or InGaN layers doped with Mg by the mechanism of polarization-induced doping. N-polar GaN enables design of HBTs with graded base layers that can have high hole concentrations from polarization doping as well as quasi-electric fields that propel electrons from emitter to collector enhancing current gain. N-polar HBTs were constructed using both MOCVD and NH3 MBE growth techniques. The device results are presented. Problems in the device behavior and possible solutions are discussed.;Finally, Collector-up Ga-face HBTs were investigated. Collector-up HBT structure has the advantage of lower Base-Collector capacitance but the disadvantage of undesired injection and recombination of electrons from the emitter to the extrinsic base region. In addition, HBTs with graded base layers can be designed to obtain polarization hole doping as well as quasi electric field in the base similar to the N-polar HBTs while employing the more mature Ga-polar growth to grow the devices. The device results are presented and future challenges are presented.
机译:在这项工作中,提出了基于GaN的异质结双极晶体管(HBT)的探索。 GaN的材料特性,特别是击穿的高临界电场和高的电子饱和速度,再加上HBT的优点,例如高跨导,常关操作,高功率密度,均匀的阈值电压等,使GaN成为可能。 HBT对高频和高功率应用具有吸引力。通过MOCVD生长的AlGaN / GaN HBT结构通常在生长过程中存在镁从基极扩散到发射极层的问题,从而导致发射极层中的Mg浓度降低。为了解决这个问题,制造了通过MOCVD和再生长发射极生长的Ga极性AlGaN / GaN HBT。 HBT具有高电流密度和良好的电流增益。然而,这些器件的制造揭示了有效激活埋在发射极层下面的p型GaN基极层的问题。氨分子束外延(NH3 MBE)作为生长GaN HBT和其他垂直器件的替代方法具有吸引力。主要好处包括:清晰的Mg浓度曲线,不存在会引起垂直泄漏电流的Ga填充位错以及有源p型层。演示了通过NH3 MBE生长的AlGaN / GaN HBT。为了获得与基极层的良好欧姆接触,器件采用两种不同的工艺制造,包括再生长-再生长基极接触和再生长发射极。通过这两个过程均获得了具有高电流密度和电流增益的HBT,并讨论了结果。发现高的基极电阻会限制器件的性能。与作为HBT的基极层的GaN相比,掺杂有Mg的InGaN层是更好的选择。由于InGaN中Mg的电离效率高于GaN,因此在p型InGaN层中可以获得更高的空穴浓度。展示了具有共发射极操作和良好的集电极电流密度的GaN / InGaN / GaN HBT。发现由于离子蚀刻损伤,电子在发射极侧壁和非本征基表面的复合会降低电流增益。发现了光电化学(PEC)蚀刻处理可增强器件性能并进行了讨论。通过偏振诱导掺杂的机制,在掺有Mg的梯度AlGaN或InGaN层中可以获得高空穴浓度。 N极性GaN可以设计具有梯度基础层的HBT,这些基础层可以通过极化掺杂产生高空穴浓度,并且可以通过准电场推动电子从发射极流向集电极,从而提高电流增益。使用MOCVD和NH3 MBE生长技术构建N极HBT。显示设备结果。讨论了器件行为中的问题和可能的解决方案。最后,研究了集电极Ga-face HBT。集电极向上的HBT结构的优点是基极-集电极电容较低,但缺点是电子从发射极到非本征基极区会发生不希望的注入和复合。此外,可以设计具有渐变基极层的HBT,以在基极中获得类似于N极HBT的极化空穴掺杂以及准电场,同时采用更成熟的Ga极生长来生长器件。给出了设备结果,并提出了未来的挑战。

著录项

  • 作者

    Raman, Ajay.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号