首页> 外文学位 >Chemical Mechanical Polishing of Ruthenium and Several Dielectric Films.
【24h】

Chemical Mechanical Polishing of Ruthenium and Several Dielectric Films.

机译:钌和几种介电膜的化学机械抛光。

获取原文
获取原文并翻译 | 示例

摘要

Chemical mechanical planarization (CMP) is an enabling technology that plays a crucial role in the integrated circuit fabrication and is used to planarize a variety of materials such as metals, semiconductors, polymer films, dielectrics, composite materials, etc. In this thesis work, we investigated three such applications of CMP: a) polishing of Ru barrier liner for advanced interconnects, b) smoothening of extreme ultraviolet (EUV) mask substrates for next generation lithography and c) selective removal of silicon dioxide over silicon nitride for shallow trench isolation.;Ru polishing is challenging due to its hardness and inertness. Here, colloidal silica-based slurries containing guanidine carbonate (GC) and hydrogen peroxide (H2O2) are shown to enhance the Ru removal rates (RRs). Interestingly, neither GC nor H2O2 alone enhances the Ru RRs but their combination does due to the formation of Ru oxide-guanidinium complexes which can be polished by silica abrasives. Furthermore, even though Ru on TiN and Ru on Ta/TaN substrates were deposited at the same conditions, RRs of Ru on TiN were enhanced more compared to those on TaN/Ta. This is shown to be a consequence of the difference in the crystalline structure of the oxide films formed due to a difference in the structure of the Ru films themselves. Using X-ray diffraction, X-ray photoelectron spectroscopy, nanoindentation, zeta potential measurements, thermo gravimetric analysis and contact angle measurements, the role of GC and crystalline structure in enhancing the RRs of the films will be discussed.;Achieving angstrom level surface roughness and defectivity in single digits on extreme ultraviolet (EUV) mask substrates is a challenging task. Using an abrasive-free solution for surface smoothening can eliminate the potential defects that will be caused by abrasives in conventional slurry. Abrasive-free CMP of a-silicon films using poly (ethyleneimine) solution showed that both the final surface roughness and RR are strongly dependent on polishing pressure. We developed a hybrid two-step CMP process consisting of polishing first at 1 psi to remove sufficient material to eliminate the underlying defects, followed by polishing at 0.5 psi to achieve low surface roughness. Under these polishing conditions, CMP of a-silicon films deposited on EUV mask substrates resulted in a RMS surface roughness of ∼ 0.09 nm.;As silica abrasives are inexpensive, abundantly available and less prone to creating defects compared to ceria abrasives, there is a growing need for colloidal silica-based slurries to enable shallow trench isolation schemes. We investigated colloidal silica-based slurries containing anionic surfactants, namely dodecylbenzenesulfonic acid (DBSA) and dodecyl phosphate (DP), and anionic polymers, namely poly (styrene sulfonic acid) (PSSA), poly (acrylic acid) (PAA), and poly (acrylic acid-co-maleic) acid) (PAAMA), to selectively polish oxide films over nitride films. It is shown that dispersions containing 5wt% silica + 150 ppm DBSA, 5wt% silica + 150 ppm DP and 5wt% silica + 0.5 wt% PSSA slurries at pH 2 can achieve the desired selectivity (SiO2 removal rate /SiN removal rate) of ∼ 80-100 : 1 with a nitride loss of < 1nm/min and good surface quality (RMS surface roughness < 1 nm). Interestingly, nitride removal rates (RRs) were suppressed only in the pH range 2-4 while the oxide RRs remained high. Using zeta potential (ZP) and thermo-gravimetric analysis (TGA) measurements and pKa values of the additives, a polishing mechanism is proposed to explain the observed selective polishing behavior.
机译:化学机械平面化(CMP)是一项使能技术,它在集成电路制造中起着至关重要的作用,并用于平面化各种材料,例如金属,半导体,聚合物膜,电介质,复合材料等。在本论文中,我们研究了CMP的三种此类应用:a)抛光用于高级互连的Ru阻挡衬里; b)平滑极紫外(EUV)掩模衬底,以用于下一代光刻;以及c)在氮化硅上选择性去除二氧化硅以实现浅沟槽隔离。 ; Ru抛光由于其硬度和惰性而具有挑战性。在此,含有碳酸胍(GC)和过氧化氢(H2O2)的胶体二氧化硅基浆料显示出可以提高Ru去除率(RRs)。有趣的是,GC和H2O2都不能单独增强Ru RR,但是由于形成了可以被二氧化硅磨料抛光的Ru氧化物-胍鎓络合物,因此它们的组合确实不能增强Ru RR。此外,即使在相同条件下沉积TiN上的Ru和Ta / TaN衬底上的Ru,与TaN / Ta上的Ru相比,Ru在TiN上的RR仍得到更大的增强。这表明是由于Ru膜本身的结构差异而形成的氧化物膜的晶体结构差异的结果。使用X射线衍射,X射线光电子能谱,纳米压痕,ζ电位测量,热重分析和接触角测量,将讨论GC和晶体结构在增强薄膜RR方面的作用。极紫外(EUV)掩模基板上的个位数缺陷是一项艰巨的任务。使用无磨料的溶液进行表面平滑处理可以消除常规浆料中的磨料可能引起的潜在缺陷。使用聚(乙烯亚胺)溶液对a硅膜进行无磨蚀CMP显示,最终表面粗糙度和RR都强烈取决于抛光压力。我们开发了一种混合式两步CMP工艺,该工艺包括首先在1 psi抛光以去除足够的材料以消除潜在的缺陷,然后在0.5 psi抛光以实现低表面粗糙度。在这些抛光条件下,沉积在EUV掩模基板上的a硅膜的CMP导致RMS表面粗糙度约为0.09 nm .;由于二氧化硅磨料价格便宜,易得并且比二氧化铈磨料更不易产生缺陷,因此存在越来越需要胶体二氧化硅基浆料来实现浅沟槽隔离方案。我们研究了含有阴离子表面活性剂即十二烷基苯磺酸(DBSA)和十二烷基磷酸酯(DP)以及阴离子聚合物即聚(苯乙烯磺酸)(PSSA),聚(丙烯酸)(PAA)和聚(丙烯酸-马来酸)(PAAMA),以选择性地抛光氮化膜上的氧化膜。结果表明,在pH 2下含有5wt%的二氧化硅+ 150 ppm的DBSA,5wt%的二氧化硅+ 150 ppm的DP和5wt%的二氧化硅+ 0.5 wt%的PSSA浆料的分散体可以达到所需的选择性(SiO2去除率/ SiN去除率) 80-100:1,氮化物损失<1nm / min,表面质量好(RMS表面粗糙度<1 nm)。有趣的是,仅在pH 2-4范围内抑制了氮化物去除率(RRs),而氧化物RRs仍然很高。使用zeta电位(ZP)和热重分析(TGA)测量以及添加剂的pKa值,提出了一种抛光机理来解释观察到的选择性抛光行为。

著录项

  • 作者

    Amanapu, Hariprasad.;

  • 作者单位

    Clarkson University.;

  • 授予单位 Clarkson University.;
  • 学科 Chemistry Polymer.;Engineering General.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号