首页> 外文学位 >Integral Deferred Correction methods for scientific computing.
【24h】

Integral Deferred Correction methods for scientific computing.

机译:用于科学计算的积分延迟校正方法。

获取原文
获取原文并翻译 | 示例

摘要

Since high order numerical methods frequently can attain accurate solutions more efficiently than low order methods, we develop and analyze new high order numerical integrators for the time discretization of ordinary and partial differential equations. Our novel methods address some of the issues surrounding high order numerical time integration, such as the difficulty of many popular methods' construction and handling the effects of disparate behaviors produce by different terms in the equations to be solved.;We are motivated by the simplicity of how Deferred Correction (DC) methods achieve high order accuracy [72, 27]. DC methods are numerical time integrators that, rather than calculating tedious coefficients for order conditions, instead construct high order accurate solutions by iteratively improving a low order preliminary numerical solution. With each iteration, an error equation is solved, the error decreases, and the order of accuracy increases. Later, DC methods were adjusted to include an integral formulation of the residual, which stabilizes the method. These Spectral Deferred Correction (SDC) methods [25] motivated Integral Deferred Corrections (IDC) methods. Typically, SDC methods are limited to increasing the order of accuracy by one with each iteration due to smoothness properties imposed by the gridspacing. However, under mild assumptions, explicit IDC methods allow for any explicit rth order Runge-Kutta (RK) method to be used within each iteration, and then an order of accuracy increase of r is attained after each iteration [18]. We extend these results to the construction of implicit IDC methods that use implicit RK methods, and we prove analogous results for order of convergence.;One means of solving equations with disparate parts is by semi-implicit integrators, handling a "fast" part implicitly and a "slow" part explicitly. We incorporate additive RK (ARK) integrators into the iterations of IDC methods in order to construct new arbitrary order semi-implicit methods, which we denote IDC-ARK methods. Under mild assumptions, we rigorously establish the order of accuracy, finding that using any rth order ARK method within each iteration gives an order of accuracy increase of r after each iteration [15]. We apply IDC-ARK methods to several numerical examples and present preliminary results for adaptive timestepping with IDC-ARK methods. Another means of solving equations with disparate parts is by operator splitting methods. We construct high order splitting methods by employing low order splitting methods within each IDC iteration. We analyze the efficiency of our split IDC methods as compared to high order split methods in [77] and also note that our construction is less tedious. Conservation of mass is proved for split IDC methods with semi-Lagrangian WENO reconstruction applied to the Vlasov-Poisson system. We include numerical results for the application of split IDC methods to constant advection, rotating, and classic plasma physics problems.;This is a preliminary, yet significant, step in the development of simple, high order numerical integrators that are designed for solving differential equations that display disparate behaviors. Our results could extend naturally to an asymptotic preserving setting or to other operator splittings.
机译:由于高阶数值方法比低阶方法更有效地获得精确解,因此我们开发和分析了新的高阶数值积分器,用于对常态和偏微分方程进行时间离散。我们的新颖方法解决了围绕高阶数值时间积分的一些问题,例如许多流行方法的构建难度以及处理要解决的方程中不同项所产生的不同行为的影响。延迟校正(DC)方法如何实现高阶精度[72,27]。 DC方法是数字时间积分器,而不是为阶数条件计算繁琐的系数,而是通过迭代地改进低阶初步数值解来构造高阶精确解。每次迭代都会求解一个误差方程,误差减小,并且精度的阶数增加。后来,对DC方法进行了调整,以包括残差的整体公式,从而使方法稳定。这些频谱延迟校正(SDC)方法[25]推动了积分延迟校正(IDC)方法。通常,由于网格间距所施加的平滑性,SDC方法每次迭代都将精度提高一级。然而,在温和的假设下,显式IDC方法允许在每次迭代中使用任何显式的r阶Runge-Kutta(RK)方法,然后在每次迭代后获得r的精度提高顺序[18]。我们将这些结果扩展到使用隐式RK方法的隐式IDC方法的构造,并证明收敛顺序的相似结果。;具有不相同部分的方程式的一种求解方法是由半隐式积分器隐式处理“快速”部分和“慢”部分。我们将加性RK(ARK)积分器合并到IDC方法的迭代中,以构造新的任意阶半隐式方法,我们将其表示为IDC-ARK方法。在温和的假设下,我们严格地建立了精确度的阶次,发现在每次迭代中使用任何r阶ARK方法都会在每次迭代之后使r的阶数增加[15]。我们将IDC-ARK方法应用于几个数值示例,并提供IDC-ARK方法用于自适应时步的初步结果。解决具有不同部分的方程式的另一种方法是通过算符拆分方法。我们通过在每次IDC迭代中采用低阶拆分方法来构造高阶拆分方法。与[77]中的高阶拆分方法相比,我们分析了拆分的IDC方法的效率,并且还注意到我们的构造不太繁琐。通过将半拉格朗日WENO重构应用于Vlasov-Poisson系统,证明了IDC分割方法的质量守恒。我们提供了将分离IDC方法应用于恒定对流,旋转和经典等离子物理问题的数值结果;这是开发用于求解微分方程的简单,高阶数值积分器的初步但重要的一步显示不同的行为。我们的结果可以自然地扩展到渐近保留设置或其他算子分裂。

著录项

  • 作者

    Morton, Maureen Marilla.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Applied Mathematics.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 220 p.
  • 总页数 220
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号