首页> 外文学位 >Experimental input for the design of metallic glass/crystalline composites.
【24h】

Experimental input for the design of metallic glass/crystalline composites.

机译:用于设计金属玻璃/晶体复合材料的实验输入。

获取原文
获取原文并翻译 | 示例

摘要

Bulk metallic glasses often exhibit exceptional strength and large elastic strains, but the structural applications of bulk metallic glasses are limited by their extremely low tensile ductility. Below the glass transition temperature of the alloy, plastic deformation occurs primarily in narrow shear bands, which propagate unimpeded through the monolithic glass structure, resulting in catastrophic failure under tensile loading. A number of studies have added crystalline reinforcements to the glassy matrix in an effort to block shear band propagation and increase ductility. The reinforcements in these bulk metallic glass matrix composites (BMGMC's) can be added as ex situ particles or fibers infiltrated by the glass-forming liquid [1], or can be formed in situ, either via devitrification of the glass during post-processing [2] or as a second phase that precipitates from the melt during solidification [3]. The size, distribution, and mechanical properties of the reinforcement phase have significant impact on the ductility of the composite. However, surprisingly little quantitative microstructural information is available for BMGMC's, particularly those formed by precipitation from the melt.;In this work, we examine two in situ BMGMC's in which a ductile crystalline phase precipitates during solidification of the melt, resulting in a complex dendritic structure embedded in a continuous glass matrix. A 3D serial sectioning process was used to image the microstructure at regular intervals by removing slices of material using a dual beam focused ion-scanning electron microscope (FIB). Due to the complex nature of the microstructure, measurements of key features were conducted using a 3D measurement method that was developed for this purpose. Experiments were also conducted to provide experimental input for the development and tuning of finite element models. Changes in the elastic modulus of the composite were evaluated over a range of stresses that encompassed the yield point of the composite. An interesting increase in the modulus was observed prior to yielding. The work is concluded with a study of the accumulation of strain within the composite microstructure during tensile loading. The strain was determined and evaluated by a digital image correlation method.;[1] R. B. Dandliker, R. D. Conner, and W. L. Johnson, "Melt infiltration casting of bulk metallic-glass matrix composites," J. Mater. Res., vol. 13, no. 10, pp. 2896--2901, 1998.;[2] J. Eckert, J. Das, S. Pauly, and C. Duhamel, "Mechanical Properties of Bulk Metallic Glasses and Composites," J. Mater. Res., vol. 22, no. 2, pp. 285--301, 2007.;[3] D. C. Hofmann, J.-Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M. D. Demetriou, and W. L. Johnson, "Designing metallic glass matrix composites with high toughness and tensile ductility.," Nature, vol. 451, no. 7182, pp. 1085--9, Feb. 2008.
机译:大块金属玻璃通常表现出优异的强度和大的弹性应变,但是大块金属玻璃的结构应用受到其极低的拉伸延展性的限制。在合金的玻璃化转变温度以下,塑性变形主要发生在狭窄的剪切带中,该剪切带不受阻碍地通过整块玻璃结构传播,从而在拉伸载荷下导致灾难性破坏。为了阻止剪切带的传播并增加延展性,许多研究已向玻璃态基质中添加了晶体增强剂。这些块状金属玻璃基复合材料(BMGMC's)中的增强材料可以作为非原位颗粒或被形成玻璃的液体渗透的纤维[1]添加,也可以在后处理过程中通过玻璃失透而原位形成[ 2]或作为第二相在凝固过程中从熔体中沉淀出来[3]。增强相的尺寸,分布和机械性能对复合材料的延展性有重要影响。然而,令人惊讶的是,几乎没有关于BMGMC的定量微观结构信息,特别是那些由熔体沉淀形成的定量微结构信息。;在这项工作中,我们研究了两种原位BMGMC,其中在熔体凝固过程中,韧性的结晶相沉淀,形成了复杂的树枝状晶体。嵌入连续玻璃基质的结构。通过使用双束聚焦离子扫描电子显微镜(FIB)去除材料的切片,使用3D连续切片过程以规则的间隔对微观结构进行成像。由于微结构的复杂性质,关键特征的测量是使用为此目的开发的3D测量方法进行的。还进行了实验,以为有限元模型的开发和调整提供实验输入。在包括复合材料屈服点的应力范围内评估了复合材料的弹性模量变化。在屈服之前观察到模量有有趣的增加。这项工作以对拉伸载荷期间复合材料微结构内应变累积的研究结束。通过数字图像相关方法确定并评估了应变。[1] R. B. Dandliker,R。D. Conner和W. L. Johnson,“大块金属-玻璃基复合材料的熔渗铸件”,J。Mater。水库卷13号10,第2896--2901页,1998年。[2] J. Eckert,J。Das,S。Pauly和C. Duhamel,“大块金属玻璃和复合材料的机械性能”,J。Mater。水库卷22号,第2卷,第285--301页,2007年; [3] D. C. Hofmann,J.-Y。 Suh,A. Wiest,G. Duan,M.-L. Lind,M. D. Demetriou和W. L. Johnson,“设计具有高韧性和拉伸延展性的金属玻璃基复合材料。”,《自然》第一卷451号7182,第1085--9页,2008年2月。

著录项

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号