首页> 外文学位 >Ultrasound Shear Strain Imaging for Breast Cancer Classification.
【24h】

Ultrasound Shear Strain Imaging for Breast Cancer Classification.

机译:超声剪切应变成像对乳腺癌的分类。

获取原文
获取原文并翻译 | 示例

摘要

Early detection of breast cancer can significantly reduce breast cancer mortality and morbidity. Pathological differences between benign and malignant masses include the stiffness contrast, nonlinear stiffness variations and changes in breast mass boundaries evoked by desmoplastic scirrhous reactions. Ultrasound as a low cost and safe imaging modality has become the primary adjunct to mammography for screening. Ultrasound elasticity imaging can differentiate breast masses based on different mechanical and acoustic properties.;The goal of this dissertation is to evaluate features (normalized axial and full shear strain area, namely NASSA and NFSSA) derived from shear strain imaging for breast mass differentiation. Finite element simulation, tissue-mimicking (TM) phantom experiments, and in vivo studies, are utilized to evaluate new algorithms and perform statistical analysis.;A new two-dimensional (2D) parallelogram kernel motion tracking algorithm was developed in this dissertation to estimate displacement vectors for normal and shear strain imaging, utilizing beam steered ultrasound radiofrequency data. Quantitative analysis based on the elastographic signal-to-noise ( SNRe) and contrast-to-noise (CNRe), was utilized to demonstrate the statistical significance of the results obtained from TM uniformly elastic and ellipsoidal inclusion phantoms respectively. Our results demonstrate that our 2D deformation tracking significantly outperforms the currently utilized one-dimensional (1D) algorithm for beam steered data.;Classification results obtained using radiofrequency data sets on 123 patients (benign: 65, malignant: 58) acquired at four hospitals equipped with two different ultrasound systems, were utilized to demonstrate the feasibility of using these normalized features extracted from the axial strain and axial-shear strain images for breast cancer diagnosis. Scatter plots of the NASSA feature shows that most of the malignant masses exhibit a NASSA value larger than 1.2, while for benign masses, it is lower than 1.2. The corresponding area under (AUC) the receiver operating characteristic (ROC) curve of 0.9 demonstrates the potential of using the NASSA feature for breast mass classification. Integrating the NASSA feature with the previously proposed features, namely the 'size ratio' and the 'stiffness contrast', further improves the classification performance, achieving an AUC of 0.93. These results demonstrate the potential of elasticity based imaging features for breast mass differentiation and classification.
机译:早期发现乳腺癌可以显着降低乳腺癌的死亡率和发病率。良性和恶性肿块之间的病理学差异包括僵硬性对比,非线性僵硬性变化以及由增生性硬化反应引起的乳房肿块边界的变化。超声作为一种低成本且安全的成像方式已成为乳腺X线摄影筛查的主要辅助手段。超声弹性成像可以根据不同的机械和声学特性来区分乳腺肿块。本论文的目的是评估由剪切应变成像得出的特征(归一化的轴向和全剪切应变区域,即NASSA和NFSSA),以区分乳腺肿块。利用有限元模拟,组织模拟(TM)体模实验和体内研究来评估新算法并进行统计分析。;本论文开发了一种新的二维(2D)平行四边形核运动跟踪算法以进行估计利用波束控制的超声射频数据,进行法向和剪切应变成像的位移向量。基于弹性成像的信噪比(SNRe)和对比噪声(CNRe)进行定量分析,以证明分别从TM均匀弹性和椭球形包含体模获得的结果的统计意义。我们的结果表明,我们的2D变形跟踪明显优于目前使用的一维(1D)算法的波束控制数据。;使用射频数据集对四家配备有医院的123名患者(良性:65,恶性:58)进行的分类结果利用两个不同的超声系统,证明了使用从轴向应变和轴向剪切应变图像中提取的这些归一化特征进行乳腺癌诊断的可行性。 NASSA特征的散点图显示,大多数恶性肿块的NASSA值大于1.2,而良性肿块的NASSA值小于1.2。接收器工作特性(ROC)曲线(0.9)下的(AUC)下的相应面积证明了使用NASSA功能进行乳房质量分类的潜力。将NASSA功能与先前提出的功能(即“尺寸比”和“刚度对比度”)集成在一起,可以进一步提高分类性能,AUC为0.93。这些结果证明了基于弹性的成像特征在乳腺肿块分化和分类中的潜力。

著录项

  • 作者

    Xu, Haiyan.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Electronics and Electrical.;Health Sciences Radiology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号