首页> 外文学位 >Thermo-piezo-electro-mechanical simulation of AlGaN (aluminum gallium nitride) / GaN (gallium nitride) High Electron Mobility Transistors.
【24h】

Thermo-piezo-electro-mechanical simulation of AlGaN (aluminum gallium nitride) / GaN (gallium nitride) High Electron Mobility Transistors.

机译:AlGaN(氮化镓铝)/ GaN(氮化镓)高电子迁移率晶体管的热压电机械仿真。

获取原文
获取原文并翻译 | 示例

摘要

Due to the current public demand of faster, more powerful, and more reliable electronic devices, research is prolific these days in the area of high electron mobility transistor (HEMT) devices. This is because of their usefulness in RF (radio frequency) and microwave power amplifier applications including microwave vacuum tubes, cellular and personal communications services, and widespread broadband access. Although electrical transistor research has been ongoing since its inception in 1947, the transistor itself continues to evolve and improve much in part because of the many driven researchers and scientists throughout the world who are pushing the limits of what modern electronic devices can do. The purpose of the research outlined in this paper was to better understand the mechanical stresses and strains that are present in a hybrid AlGaN (Aluminum Gallium Nitride) / GaN (Gallium Nitride) HEMT, while under electrically-active conditions. One of the main issues currently being researched in these devices is their reliability, or their consistent ability to function properly, when subjected to high-power conditions.;The researchers of this mechanical study have performed a static (i.e. frequency-independent) reliability analysis using powerful multiphysics computer modeling/simulation to get a better idea of what can cause failure in these devices. Because HEMT transistors are so small (micro/nano-sized), obtaining experimental measurements of stresses and strains during the active operation of these devices is extremely challenging. Physical mechanisms that cause stress/strain in these structures include thermo-structural phenomena due to mismatch in both coefficient of thermal expansion (CTE) and mechanical stiffness between different materials, as well as stress/strain caused by "piezoelectric" effects (i.e. mechanical deformation caused by an electric field, and conversely voltage induced by mechanical stress) in the AlGaN and GaN device portions (both piezoelectric materials). This piezoelectric effect can be triggered by voltage applied to the device's gate contact and the existence of an HEMT-unique "two-dimensional electron gas" (2DEG) at the GaN-AlGaN interface.;COMSOL Multiphysics computer software has been utilized to create a finite element (i.e. piece-by-piece) simulation to visualize both temperature and stress/strain distributions that can occur in the device, by coupling together (i.e. solving simultaneously) the thermal, electrical, structural, and piezoelectric effects inherent in the device. The 2DEG has been modeled not with the typically-used self-consistent quantum physics analytical equations, rather as a combined localized heat source* (thermal) and surface charge density* (electrical) boundary condition. Critical values of stress/strain and their respective locations in the device have been identified. Failure locations have been estimated based on the critical values of stress and strain, and compared with reports in literature. The knowledge of the overall stress/strain distribution has assisted in determining the likely device failure mechanisms and possible mitigation approaches. The contribution and interaction of individual stress mechanisms including piezoelectric effects and thermal expansion caused by device self-heating (i.e. fast-moving electrons causing heat) have been quantified.;* Values taken from results of experimental studies in literature.
机译:由于当前公众对更快,更强大和更可靠的电子设备的需求,因此在高电子迁移率晶体管(HEMT)器件领域,如今的研究多产。这是因为它们在RF(射频)和微波功率放大器应用(包括微波真空管,蜂窝和个人通信服务以及广泛的宽带访问)中很有用。尽管自1947年成立以来一直在进行电子晶体管的研究,但晶体管本身仍在不断发展和改进,这在一定程度上是因为全世界有许多受驱动的研究人员和科学家在推动现代电子设备的功能极限。本文概述的研究目的是为了更好地了解在电激活条件下,AlGaN(氮化铝镓)/ GaN(氮化镓)混合HEMT中存在的机械应力和应变。这些设备中目前正在研究的主要问题之一是它们的可靠性,或在高功率条件下的一致正常运行的能力。该机械研究的研究人员进行了静态(即与频率无关)可靠性分析使用功能强大的多物理场计算机建模/仿真来更好地了解可能导致这些设备故障的原因。由于HEMT晶体管非常小(微米/纳米尺寸),因此在这些器件的有源操作期间获得应力和应变的实验测量值极具挑战性。在这些结构中引起应力/应变的物理机制包括由于热膨胀系数(CTE)和不同材料之间的机械刚度不匹配而引起的热结构现象,以及由“压电”效应(即机械变形)引起的应力/应变。 (由压电材料引起的电场)以及相反由机械应力引起的电压)。施加到器件栅极触点的电压以及GaN-AlGaN界面处HEMT独特的“二维电子气”(2DEG)的存在可以触发这种压电效应。COMSOLMultiphysics计算机软件已被用于创建半导体器件。通过耦合(即同时求解)设备固有的热,电,结构和压电效应,通过有限元(逐段)模拟来可视化出现在设备中的温度和应力/应变分布。 2DEG的建模不是使用通常使用的自洽量子物理学分析方程式,而是组合使用的局部热源*(热)和表面电荷密度*(电)边界条件。已确定应力/应变的临界值及其在设备中的位置。根据应力和应变的临界值估算了失效位置,并与文献报道进行了比较。总体应力/应变分布的知识有助于确定可能的设备故障机制和可能的缓解方法。已量化了各个应力机制的贡献和相互作用,包括压电效应和器件自热(即快速移动的电子引起热量)引起的热膨胀。; *取自文献中的实验研究结果。

著录项

  • 作者

    Stevens, Lorin E.;

  • 作者单位

    Utah State University.;

  • 授予单位 Utah State University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Mechanical.;Physics Electricity and Magnetism.
  • 学位 M.S.
  • 年度 2013
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号