首页> 外文学位 >Temperature compensated CMOS and MEMS-CMOS oscillators for clock generators and frequency references.
【24h】

Temperature compensated CMOS and MEMS-CMOS oscillators for clock generators and frequency references.

机译:温度补偿的CMOS和MEMS-CMOS振荡器,用于时钟发生器和频率基准。

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this dissertation is to explore alternatives to quartz crystal based solutions to system clocking. While quartz has inherent advantages in terms of stability and cost, the inability to manufacture quartz in a standard silicon process impedes goals of miniaturization and system integration. A closer look at clocking requirements reveals widely different specifications for various applications. In addition to traditional CMOS oscillators such as ring and LC oscillators, the recent advent of micromachining technologies and MEMS resonators has provided a miniaturized, silicon alternative to quartz with potentially comparable performance levels. This provides the system designer with an option to make a clocking solution that most suits the system needs.;This work focuses on two aspects: the design of a stable CMOS ring oscillator for micro-controller type applications; and the design of electronics for an ultra-stable MEMS resonator based oscillator for reference oscillator applications. With the former approach, the focus of the research was the design of a process and temperature compensated oscillator to be stable to within 5%. The design, completed in a 0.25microm CMOS process, was stable to within 5.2% over 165°C and 4 different runs. With the MEMS oscillator, the aim of the research was to implement low phase noise, temperature stable oscillators over a wide frequency range. A novel temperature compensation technique was designed to reduce the temperature variation from 2800ppm to 39ppm over 100°C. The sources of phase noise in MEMS oscillators are analyzed and a 100MHz oscillator with sub-100ppm integrated jitter is demonstrated without the use of phase-locking techniques.
机译:本文的目的是探索基于石英晶体的系统时钟解决方案的替代方案。尽管石英在稳定性和成本方面具有固有优势,但是无法以标准的硅工艺制造石英阻碍了微型化和系统集成的目标。仔细研究时钟要求,可以发现针对各种应用的不同规格。除了传统的CMOS振荡器(例如环形和LC振荡器)之外,最近出现的微加工技术和MEMS谐振器还提供了石英的微型硅替代品,具有可比的性能水平。这为系统设计人员提供了一个使时钟解决方案最适合系统需求的选择。这项工作集中在两个方面:设计用于微控制器类型应用的稳定CMOS环形振荡器;以及用于参考振荡器应用的基于超稳定MEMS谐振器的振荡器的电子学设计。使用前一种方法,研究的重点是将工艺和温度补偿振荡器的设计稳定在5%以内。该设计以0.25微米CMOS工艺完成,在165°C和4次不同的运行下稳定在5.2%以内。利用MEMS振荡器,该研究的目的是在很宽的频率范围内实现低相位噪声,温度稳定的振荡器。设计了一种新颖的温度补偿技术,以将100°C时的温度变化从2800ppm降低到39ppm。分析了MEMS振荡器中的相位噪声源,并演示了不使用锁相技术的具有100ppm以下集成抖动的100MHz振荡器。

著录项

  • 作者

    Sundaresan, Krishnakumar.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:01

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号