首页> 外文学位 >Quantitative characterization and modeling of the microstructure of solid oxide fuel cell composite electrodes.
【24h】

Quantitative characterization and modeling of the microstructure of solid oxide fuel cell composite electrodes.

机译:固体氧化物燃料电池复合电极微观结构的定量表征和建模。

获取原文
获取原文并翻译 | 示例

摘要

Three-phase porous composites containing electrolyte (ionic conductor), electronic conductor, and porosity phases are frequently used for solid oxide fuel cell (SOFC) electrodes. Performance of such electrodes is microstructure sensitive. Topological connectivity of the microstructural phases and total length of triple phase boundaries are the key microstructural parameters that affect the electrode performance. These microstructural attributes in turn depend on numerous process parameters including relative proportion, mean sizes, size distributions, and morphologies of the electrolyte and electronic conductor particles in the powder mix used for fabrication of the composites. Therefore, improvement of the performance of SOFC composite electrodes via microstructural engineering is a complex multivariate problem that requires considerable input from microstructure modeling and simulations. This dissertation presents a new approach for geometric modeling and simulation of three-dimensional (3D) microstructure of three-phase porous composites for SOFC electrodes and provides electrode performance optimization guidelines based on the parametric studies on the effects of processing parameters on the total length and topological connectivity of the triple phase boundaries. The model yields an equation for total triple phase boundary length per unit volume (LTPB) that explicitly captures the dependence of LTPB on relative proportion of electrolyte and electronic conductor phases; volume fraction of porosity; and mean size, coefficient of variation, and skewness of electrolyte and electronic conductor particle populations in the initial powder mix. The equation is applicable to electrolyte and electronic conductor particles of any convex shapes and size distributions. The model is validated using experimental measurements performed in this research as well as the measurements performed by other researchers. Computer simulations of 3D composite electrode microstructures have been performed to further validate the microstructure model and to study topological connectivity of the triple phase boundaries in 3D microstructural space. A detailed parametric analysis reveals that (1) non-equiaxed plate-like, flake-like, and needle-like electrolyte and electronic conductor particle shapes can yield substantially higher LTPB; (2) mono-sized electrolyte and electronic conductor powders lead to higher LTPB as compared to the powders having size distributions with large coefficients of variation; (3) LTPB is inversely proportional to the mean sizes of electrolyte and electronic conductor particles; (4) a high value of LTPB is obtained at the lowest porosity volume fraction that permits sufficient connectivity of the pores for gas permeability; and (5) LTPB is not sensitive to the relative proportion of electrolyte and electronic conductor phases in the composition regime of interest in composite electrode applications.
机译:包含电解质(离子导体),电子导体和孔隙相的三相多孔复合材料经常用于固体氧化物燃料电池(SOFC)电极。这种电极的性能对微结构敏感。微结构相的拓扑连通性和三相边界的总长度是影响电极性能的关键微结构参数。这些微观结构属性又取决于许多工艺参数,包括相对比例,平均尺寸,尺寸分布以及用于制造复合材料的粉末混合物中电解质和电子导体颗粒的形态。因此,通过微结构工程改进SOFC复合电极的性能是一个复杂的多变量问题,需要从微结构建模和仿真中获得大量投入。本文为SOFC电极三相多孔复合材料的三维(3D)微观结构的几何建模和仿真提供了一种新的方法,并基于参数研究对工艺参数对总长度和长度的影响提供了电极性能优化指导。三相边界的拓扑连通性。该模型产生了单位体积总三相边界长度(LTPB)的方程,该方程明确捕捉了LTPB对电解质和电子导体相的相对比例的依赖性。孔隙率初始粉末混合物中电解质和电子导体颗粒的平均尺寸,变异系数和偏度。该方程式适用于任何凸起形状和尺寸分布的电解质和电子导体颗粒。使用本研究中进行的实验测量以及其他研究人员进行的测量来验证模型。已经进行了3D复合电极微结构的计算机仿真,以进一步验证微结构模型并研究3D微结构空间中三相边界的拓扑连通性。详细的参数分析显示:(1)非等价的板状,片状和针状电解质和电子导体颗粒形状可以产生更高的LTPB; (2)与具有大的变化系数的尺寸分布的粉末相比,单一尺寸的电解质和电子导体粉末导致更高的LTPB; (3)LTPB与电解质和电子导体颗粒的平均尺寸成反比; (4)在最低的孔隙度体积分数下获得了较高的LTPB值,从而允许孔隙充分连通以实现透气性; (5)在复合电极应用中,在感兴趣的组成范围内,LTPB对电解质和电子导体相的相对比例不敏感。

著录项

  • 作者

    Zhang, Shenjia.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 182 p.
  • 总页数 182
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号