首页> 外文学位 >The impact of field-aligned potentials on Jupiter's auroral emission.
【24h】

The impact of field-aligned potentials on Jupiter's auroral emission.

机译:场对准电势对木星极光发射的影响。

获取原文
获取原文并翻译 | 示例

摘要

We present a time-independent model of Jupiter's rotationally driven aurora based on torque balance between the ionosphere and magnetosphere which includes the effects of a field-aligned potential and a variable ionospheric Pedersen conductance. The field-aligned potential arises from field-aligned current limitation at high-latitudes and changes the mapping of the electric fields between the ionosphere and the magnetosphere. We apply a Vlasov solution to determine the location and extent of the field-aligned potential drop along the flux tube. The Pedersen conductance is modified by precipitating auroral electrons. We find a function for the Pedersen conductance that varies with electron precipitation energy and incident energy flux. The primary effect of the field-aligned potential is to enhance the currents transferring angular momentum from the ionosphere to the magnetosphere. Our model reproduces many of the characteristics of Jupiter's main auroral emission derived from observations including the energy flux into the ionosphere (2 - 30 mW/m 2), the width of the aurora at the ionosphere (1000 km), the mapped equatorial location of the aurora (20 - 30 RJ), and field-aligned potentials consistent with observed electron energies (30 - 200 kV).We explore parameter space to show how the auroral current system varies with the radial mass transport rate of the magnetospheric plasma, background ionospheric Pedersen conductance, efficiency of the enhancement in Pedersen conductance, high-latitude electron density, high-latitude electron temperature, location of the acceleration region, and distension of the equatorial magnetic field. Lastly, we explore future extensions of the model within the jovian system and applications to other systems.
机译:我们基于电离层和磁层之间的扭矩平衡,提出了一个与时间无关的木星旋转驱动极光模型,其中包括磁场对准电势和可变电离层Pedersen电导的影响。磁场取向的电势是由高纬度的磁场取向的电流限制引起的,它改变了电离层和磁层之间的电场映射。我们应用Vlasov解决方案来确定沿通量管场对准的电位降的位置和范围。 Pedersen电导通过沉淀极光电子而改变。我们发现Pedersen电导的函数随电子沉淀能和入射能通量而变化。场对准电势的主要作用是增强将角动量从电离层传递到磁层的电流。我们的模型再现了木星主要​​极光发射的许多特征,这些特征来自观测,包括进入电离层的能量通量(2-30 mW / m 2),电离层的极光宽度(1000 km),测绘的赤道位置极光(20-30 RJ)和与观察到的电子能量(30-200 kV)一致的场取向电势。我们探索了参数空间,以显示极光电流系统如何随磁层等离子体的径向质量传输率,背景电离层Pedersen电导,Pedersen电导增强效率,高纬度电子密度,高纬度电子温度,加速区域的位置以及赤道磁场的扩展。最后,我们探讨了模型在jovian系统中的未来扩展以及在其他系统中的应用。

著录项

  • 作者

    Ray, Licia Colette.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Physics Astronomy and Astrophysics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号