首页> 外文学位 >Modeling and optimization of multi-gate FETs for low-power and robust circuit design.
【24h】

Modeling and optimization of multi-gate FETs for low-power and robust circuit design.

机译:用于低功耗和稳健电路设计的多栅极FET的建模和优化。

获取原文
获取原文并翻译 | 示例

摘要

Ultrathin body MOSFETs are suitable in sub-50nm technologies due to their excellent immunity to short-channel-effects and increased radiation hardness. However, at extremely scaled gate lengths ( 20nm), these devices pose some serious challenges such as increased drain-induced-barrier-lowering (DIBL), exponentially higher leakage, dominating parasitic capacitances and large process variations. We propose device optimization techniques for multiple-gate FETs to reduce power dissipation and improve robustness in logic and memories. We optimize the transistor channel length by varying the gate sidewall offset spacer thickness instead of varying the printed gate length. Our proposed technique reduces short-channel-effect and off-state sub-threshold and gate edge leakages. To analyze the short-channel-effect dependence on device geometry, we model the body potential distribution in a double-gate FET in sub-threshold region. Increasing spacer thickness also reduces gate to source/drain extension overlap and fringe parasitic capacitances resulting in reduced dynamic power dissipation. We developed a compact analytical model to compute the gate sidewall fringe capacitance which we further employed to compute the capacitances between the non-overlapping interconnects in different layers. We optimized the multiple-gate FETs to design low-power and robust SRAMs. We explored the design optimization window for reducing cell leakage and improve read failure probability with minimal effect on write margin, data retention voltage and access time. Further, we propose a dual-threshold voltage methodology to reduce leakage power dissipation in high-performance circuits.
机译:超薄体MOSFET具有出色的抗短沟道效应和更高的辐射硬度的特性,因此适用于50nm以下的技术。但是,在极长的栅极长度(<20nm)时,这些器件提出了一些严峻的挑战,例如增加的漏极感应势垒降低(DIBL),泄漏指数级增加,寄生电容占主导地位以及较大的工艺变化。我们提出了用于多栅极FET的器件优化技术,以减少功耗并提高逻辑和存储器的鲁棒性。我们通过改变栅极侧壁偏移间隔物的厚度而不是改变印刷栅极的长度来优化晶体管的沟道长度。我们提出的技术减少了短沟道效应和断态亚阈值以及栅极边缘泄漏。为了分析短沟道效应对器件几何形状的依赖性,我们在亚阈值区域的双栅极FET中对体电势分布进行建模。间隔物厚度的增加还减少了栅极到源极/漏极延伸的重叠和边缘寄生电容,从而降低了动态功耗。我们开发了一个紧凑的分析模型来计算栅极侧壁条纹电容,我们进一步将其用于计算不同层中非重叠互连之间的电容。我们优化了多栅极FET,以设计低功耗和坚固的SRAM。我们探索了设计优化窗口,以减少单元泄漏并提高读取失败概率,同时对写入裕量,数据保持电压和访问时间的影响最小。此外,我们提出了一种双阈值电压方法,以减少高性能电路中的泄漏功耗。

著录项

  • 作者

    Bansal, Aditya.;

  • 作者单位

    Purdue University.$bElectrical and Computer Engineering.;

  • 授予单位 Purdue University.$bElectrical and Computer Engineering.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号