首页> 外文学位 >Mobility and drive performance of ultra-thin hafnium-oxide-gated MOSFET's.
【24h】

Mobility and drive performance of ultra-thin hafnium-oxide-gated MOSFET's.

机译:超薄氧化ha门控MOSFET的迁移率和驱动性能。

获取原文
获取原文并翻译 | 示例

摘要

It has been widely accepted that hafnium-based gate dielectrics are the most promising high-permittivity candidates to replace silicon oxide to continue the CMOS technology scaling trend. However, nearly all transistors made of hafnium based gate dielectrics so far exhibit mobility degradation, compared to their SiO2 counterparts. This dissertation research focuses on two parts: (1) to understand critical mobility degradation mechanisms in MOSFET's with hafnium-based gate dielectrics through characterization and analysis; (2) to predict ultimate device performance for short channel transistors fabricated on SOI substrates with metal gate/high-kappa gate dielectrics.; Mobility degradation is a critical concern for MOSFET's made with high-kappa gate dielectrics, which should be understood and overcome before their implementation in CMOS technology. The scattering mechanisms are relatively well understood for carriers in MOSFET's gated with conventional SiO2. However, the channel mobility of MOSFET's made of high-k gate dielectrics appear to be generally lower than what one might expect from the aforementioned scattering mechanisms. With the newly developed mobility characterization technique, we observed the following in high-kappa gated MOSFET's: (1) Coulomb scattering, caused by oxide charge and charged interface traps, is a major cause of the degraded channel mobility, but it does not account for all of the degradation. (2) Strong evidence shows additional phonon scattering beyond that caused by phonons in the silicon substrate. The additional phonon scattering mechanism is consistent with the "remote phonon scattering mechanism" caused by soft optical phonons in high-kappa gate dielectric, as proposed theoretically by Fischetti et al. at IBM.; Although extensive work is in progress to introduce metal-gate electrodes and high-kappa dielectric materials in semiconductor technology to continue the scaling trend, very few studies have attempted to evaluate impacts of gate electrode work function and high-kappa gate dielectrics on short-channel device performance. With a two-dimensional numerical simulator, the gate dielectric permittivity and metalgate work-function tradeoff in short channel devices has been studied. The results show that the optimal gate work-function range is within 110meV below the conduction band edge for 25nm SOI nMOSFET's, and 90meV above valence band edge for pMOSFET's.
机译:ha基栅极电介质是最有前途的高介电常数候选材料,可替代氧化硅以继续CMOS技术的发展趋势,这一点已被广泛接受。然而,到目前为止,几乎所有由ha基栅极电介质制成的晶体管都比其SiO2晶体管表现出迁移率下降。本论文的研究主要集中在两个部分:(1)通过表征和分析,了解具有ha基栅极电介质的MOSFET的关键迁移率降低机理; (2)预测在具有金属栅极/高κ栅极电介质的SOI衬底上制造的短沟道晶体管的最终器件性能。对于使用高κ栅极电介质制造的MOSFET,迁移率下降是一个至关重要的问题,在CMOS技术中实现MOSFET之前,应了解并克服这一问题。对于用常规SiO2选通的MOSFET中的载流子,散射机理相对较为了解。然而,由高k栅极电介质制成的MOSFET的沟道迁移率似乎通常比上述散射机制所期望的要低。利用新开发的迁移率表征技术,我们在高kappa栅极MOSFET中观察到以下情况:(1)由氧化物电荷和带电的界面陷阱引起的库仑散射是导致沟道迁移率降低的主要原因,但并不能说明问题。所有的退化。 (2)有力的证据表明,除了硅衬底中的声子引起的声子散射外,还有其他声子散射。附加的声子散射机制与Fischetti等人理论上提出的,由高κ栅极电介质中的软光学声子引起的“远程声子散射机制”一致。在IBM。尽管正在进行大量工作以在半导体技术中引入金属栅电极和高kappa介电材料以继续规模化趋势,但很少有研究尝试评估栅电极功函数和高kappa介电材料对短沟道的影响设备性能。利用二维数值仿真器,研究了短沟道器件中的栅极介电常数和金属栅极功函数的折衷。结果表明,对于25nm SOI nMOSFET,最佳栅极功函数范围在导带边缘以下110meV之内,而对于pMOSFET,其最佳价带边缘在90meV以上。

著录项

  • 作者

    Guo, Dechao.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号