首页> 外文学位 >Materials and electrical properties of ALD zirconium dioxide gate dielectrics.
【24h】

Materials and electrical properties of ALD zirconium dioxide gate dielectrics.

机译:ALD二氧化锆栅极电介质的材料和电性能。

获取原文
获取原文并翻译 | 示例

摘要

For several decades, transistor dimensions including gate dielectric thickness have been reduced in order to continually increase processing power and decrease manufacturing costs of integrated circuits. For films thinner than 1.5 nm, high levels of direct tunneling current and reliability problems prevent current SiO2-based dielectrics from being utilized for microprocessor applications. As a result, continual scaling of planar transistor structures demands the introduction of a gate dielectric with a higher permittivity. The premise behind using such a material is to increase the physical thickness of the gate dielectric stack for a given capacitance density, thereby reducing tunneling current.; The replacement candidate for this study was chosen after a thorough investigation of materials and electrical properties for a number of metal oxides. ZrO2 was chosen as it exhibits the proper combination of permittivity and barrier height properties, is thermodynamically stable on silicon, and is able to exhibit an exceptional interface with silicon. An atomic layer deposition (ALD) process was concurrently chosen as a promising method for producing these new high permittivity films.; The microstructure of the Si/SiO2/ZrO2 system was analyzed using a combination of techniques including transmission electron microscopy, electron diffraction and x-ray photoelectron spectroscopy. These techniques, in addition to capacitance and leakage analyses, were further utilized to assess effects of thermal processing in different ambients on gate stack integrity. It is shown that control of oxygen partial pressure after ZrO2 deposition is critical for thermal stability of the gate stack structure.; Compatibility of silicon-based electrodes with the Si/SiO2/ZrO 2 system has been previously reported using a diffusion barrier between ZrO2 and silicon electrode. In this study, we demonstrate that thermal stability can exist under conventional dopant activation conditions without the use of a barrier layer and show how gate stack stability depends on oxygen activity during the silicon electrode growth process.; It is demonstrated that capacitance densities greater than that of 1.5 nm SiO2 films are obtainable using various silicon surfaces preparations. Scaling capabilities of resultant interfacial layers and corresponding ZrO 2 gate stacks were studied. Important electrical properties of these samples and their potential effects on overall transistor performance are discussed.
机译:几十年来,包括栅极电介质厚度的晶体管尺寸已经减小,以便不断增加处理能力并降低集成电路的制造成本。对于小于1.5 nm的薄膜,高水平的直接隧穿电流和可靠性问题阻止了当前的SiO2基电介质用于微处理器应用。结果,平面晶体管结构的连续缩放要求引入具有较高介电常数的栅极电介质。对于给定的电容密度,使用这种材料的前提是增加栅极电介质叠层的物理厚度,从而减小隧道电流。在彻底研究了多种金属氧化物的材料和电性能之后,才选择了该研究的替代候选物。选择ZrO2是因为它表现出介电常数和势垒高度特性的适当组合,在硅上具有热力学稳定性,并且能够展现出与硅的出色界面。同时选择了原子层沉积(ALD)工艺作为生产这些新型高介电常数薄膜的有前途的方法。使用包括透射电子显微镜,电子衍射和X射线光电子能谱等技术的组合分析了Si / SiO2 / ZrO2系统的微观结构。除了电容和泄漏分析外,这些技术还被用来评估不同环境中的热处理对栅堆叠完整性的影响。结果表明,控制ZrO2沉积后的氧分压对于栅极堆叠结构的热稳定性至关重要。先前已经报道了使用ZrO2和硅电极之间的扩散势垒,使硅基电极与Si / SiO2 / ZrO 2系统兼容。在这项研究中,我们证明了在不使用势垒层的情况下,常规掺杂剂活化条件下仍可以存在热稳定性,并显示出栅极堆叠稳定性如何取决于硅电极生长过程中的氧活度。已经证明,使用各种硅表面制备方法可以获得大于1.5 nm SiO2膜的电容密度。研究了所得界面层和相应的ZrO 2栅堆叠的缩放能力。讨论了这些样品的重要电性能及其对整体晶体管性能的潜在影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号