首页> 外文学位 >An evaluation of the electrical, material, and reliability characteristics and process viability of zirconium oxide and nitrogen-incorporated zirconium oxide for future generation MOS gate dielectric.
【24h】

An evaluation of the electrical, material, and reliability characteristics and process viability of zirconium oxide and nitrogen-incorporated zirconium oxide for future generation MOS gate dielectric.

机译:对用于下一代MOS栅极电介质的氧化锆和氮结合的氧化锆的电气,材料和可靠性特性以及工艺可行性的评估。

获取原文
获取原文并翻译 | 示例

摘要

Over the past decades, continuing advancements in processes and tools and the introduction of new materials have facilitated the rapid downscaling of metal-oxide-semiconductor (MOS) technology. The 90 nm technology node and beyond will face one of the toughest challenges of the semiconductor industry---the replacement of conventional silicon dioxide (SiO2) gate dielectric with a high-k dielectric material. SiO2 has been used as the gate oxide since the inception of the MOSFET, but is reaching its physical scaling limits (∼10--15A) due to excessive gate leakage current and reliability issues. High-k materials are required to reduce leakage current while maintaining a low equivalent oxide thickness (EOT). However, the integration of high-k dielectrics into the MOS process will be a serious challenge.; One promising high-k candidate is zirconium oxide (ZrO2) since it is has demonstrated thermal stability on Si, a dielectric constant ∼20, a bandgap of 5.8 eV, low EOT (=10A), and bw gate leakage. In this research, sputter-deposited ZrO2 and nitrogen-incorporated ZrO2 (ZrOxNy) were evaluated in terms of electrical, material, and reliability characteristics to determine their viability as high-k gate dielectrics. Initially, platinum-gated MOS capacitors were studied to optimize the ZrO2 deposition process and demonstrate low EOT (8.2A) and low leakage. Unfortunately, both ZrO2 and ZrOxN y were found to be incompatible with the polysilicon gate electrode process due to the formation of Zr-silicide and consequently, high leakage. However, dual metal gate electrodes will eventually replace polysilicon because of the polysilicon depletion effect.; Tantalum nitride (TaN) is a promising NMOS metal gate candidate due to its thermal stability and low resistivity. Both TaN-gated MOS capacitors and self-aligned transistors using ZrO2 and ZrOxNy were fabricated to demonstrate process viability and characterized to yield low EOT (9.5A), low leakage, negligible frequency dispersion, low C-V hysteresis, good thermal stability, and well behaved transistor characteristics. In addition, a high temperature (500--600°C) forming gas anneal was found to improve mobility, subthreshold swing, and transconductance. Overall, ZrO2 and ZrOxNy have demonstrated extremely promising electrical, material, and reliability characteristics as well as process viability and require further investigation as potential high-k gate dielectrics.
机译:在过去的几十年中,工艺和工具的不断进步以及新材料的引入推动了金属氧化物半导体(MOS)技术的快速缩小规模。 90纳米及更高技术节点将面临半导体行业最严峻的挑战之一-用高k介电材料代替传统的二氧化硅(SiO2)栅极电介质。自MOSFET诞生以来,SiO2就一直用作栅氧化物,但由于过大的栅漏电流和可靠性问题,SiO2已达到其物理比例极限(〜10--15A)。需要高k材料来减少漏电流,同时保持较低的等效氧化物厚度(EOT)。但是,将高k电介质集成到MOS工艺中将是一个严峻的挑战。一种有前途的高k候选材料是氧化锆(ZrO2),因为它已证明对Si具有热稳定性,介电常数约为20,带隙为5.8 eV,低EOT(= 10A)和bw栅极泄漏。在这项研究中,对溅射沉积的ZrO2和掺氮的ZrO2(ZrOxNy)的电气,材料和可靠性特性进行了评估,以确定它们作为高k栅极电介质的可行性。最初,对铂门控MOS电容器进行了研究,以优化ZrO2沉积工艺,并证明了其低EOT(8.2A)和低泄漏性。不幸的是,由于形成了Zr硅化物并因此导致高泄漏,发现ZrO 2和ZrO x N y与多晶硅栅电极工艺不相容。然而,由于多晶硅的耗尽效应,双金属栅电极最终将取代多晶硅。氮化钽(TaN)由于其热稳定性和低电阻率而成为有前途的NMOS金属栅极候选材料。 TaN门控MOS电容器和使用ZrO2和ZrOxNy的自对准晶体管均被制造以证明工艺可行性,并具有产生低EOT(9.5A),低泄漏,可忽略的频率色散,低CV滞后,良好的热稳定性以及良好性能的特点晶体管特性。此外,发现高温(500--600°C)形成的气体退火可以改善迁移率,亚阈值摆幅和跨导。总体而言,ZrO2和ZrOxNy已显示出极有希望的电,材料和可靠性特性以及工艺可行性,因此作为潜在的高k栅极电介质需要进一步研究。

著录项

  • 作者

    Nieh, Renee Elizabeth.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:46:07

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号