首页> 外文学位 >Design, fabrication, and characterization of a MEMS thermal switch and integration with a dynamic micro heat engine.
【24h】

Design, fabrication, and characterization of a MEMS thermal switch and integration with a dynamic micro heat engine.

机译:MEMS热敏开关的设计,制造和表征,以及与动态微热引擎的集成。

获取原文
获取原文并翻译 | 示例

摘要

In this work, a MEMS scale thermal switch was designed, fabricated, and tested. The switch was shown to contol heat transfer over millisecond time scales and micrometer length scales. The switch was then integrated into a micro power generation system to enable waste heat harvesting.; Two test stands were used to determine two figures of merit characterizing a thermal switch: the ratio of thermal resistance of the switch in the off and on states, Roff/Ron, and the time required to switch from the off to the on state, tauswitch . For the thermal resistance ratio measurements, three switch conductor materials, polished silicon surfaces, arrays of Hg micro droplets, and vertically aligned carbon nanotubes were tested at steady state conditions. The liquid-metal switch has a thermal resistance off to on ratio of 168. A thin-film radial heat flux sensor was then used to characterize the transient thermal behavior of the liquid-metal microdroplet thermal switch at dynamic state conditions. The switching speed of the Hg micro-droplet switch was shown to be on the order of 0.01 seconds, realizing heating rates of 1800°C/sec.; A cantilever piezoelectric actuator was selected for the active thermal switch. The relationship among deflection, driving frequency, input voltage, and input electric power was developed. This model gives an estimation of the required input voltage or electrical power for piezoelectric devices of any application.; Power production by a dynamic micro heat engine with an integrated thermal switch was demonstrated. The thermal switch was used to control heat addition into the microengine from a constant heat source at 60-70°C. Net power output (mechanical power out over electrical power in) was demonstrated. The maximum power output from a passively cooled microengine was 364 muW. Under this condition, the power required to run the thermal switch was 23 muW.; The feasability of using electrowetting to actuate a MEMS scale thermal switch was investigated. A switch based on this concept was designed and fabricated. These tests indicate that this approach is feasible.
机译:在这项工作中,设计,制造和测试了MEMS比例热开关。示出了该开关可控制毫秒级刻度和微米长度刻度上的传热。然后将开关集成到微发电系统中,以实现余热的收集。使用两个试验台确定热开关的两个品质因数:开关在断开和接通状态下的热阻比Roff / Ron,以及从断开状态切换到接通状态所需的时间tauswitch 。对于热阻比测量,在稳态条件下测试了三种开关导体材料,抛光的硅表面,汞微滴阵列以及垂直排列的碳纳米管。液态金属开关的热电阻开/关比为168。然后使用薄膜径向热通量传感器来表征液态金属微滴热开关在动态状态下的瞬态热行为。汞微滴开关的开关速度约为0.01秒,实现了1800℃/秒的加热速率。主动热敏开关选择了一个悬臂压电致动器。建立了挠度,驱动频率,输入电压和输入电功率之间的关系。该模型可以估算出任何应用的压电器件所需的输入电压或电功率。演示了带有集成热开关的动态微型热机产生的功率。热开关用于控制在60-70°C下从恒定热源向微引擎添加的热量。演示了净功率输出(机械功率输出超过电功率输入)。被动冷却微引擎的最大功率输出为364μW。在这种条件下,运行热敏开关所需的功率为23μW。研究了使用电润湿来致动MEMS规模热开关的可行性。设计并制造了基于此概念的开关。这些测试表明该方法是可行的。

著录项

  • 作者

    Cho, Jeong-Hyun.;

  • 作者单位

    Washington State University.;

  • 授予单位 Washington State University.;
  • 学科 Engineering Mechanical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 213 p.
  • 总页数 213
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号