首页> 外文学位 >A design study on the scaling limit of ultra-thin silicon-on-insulator MOSFETs.
【24h】

A design study on the scaling limit of ultra-thin silicon-on-insulator MOSFETs.

机译:绝缘体上超薄MOSFET比例缩放极限的设计研究。

获取原文
获取原文并翻译 | 示例

摘要

As bulk CMOS is approaching its scaling limit, SOI CMOS is gaining more and more attentions and is considered as a potential candidate for achieving 10-nm CMOS. Fully-depleted SOI MOSFETs have several inherent advantages over bulk MOSFETs-low junction capacitance, no body effect and no need for body doping to confine gate depletion. This dissertation presents a comprehensive, 2-D simulation-based design study on the scaling limit of ultra-thin silicon-on-insulator MOSFETs.; Starting with the lateral-field analysis of fully-depleted (FD) SOI MOSFETs, it is shown that the general scale-length model is inapplicable for predicting the minimum scalable channel length Lmin when the buried-oxide is very thick. The scaling of FDSOI MOSFETs is independent of the buried-oxide thickness. An empirical Lmin prediction equation is developed by approximating the constant L min contours in a design plane of silicon-film and gate-dielectric thickness. Ultimately, Lmin ∼5tSi with a high-k gate dielectric. Other factors such as body doping, substrate biasing, and buried-insulator permittivity &egr;BOX and bandgap affecting short-channel scaling of FDSOI are also investigated. Empirical Lmin prediction equations are developed for FDSOI devices with body doping and low-k buried-insulators. In principle, the Lmin can be improved from ∼5t Si to ∼2tSi by body doping. The Lmin can also be reduced 15% shorter from &egr;BOX = 3.9&egr;0 to &egr; BOX = &egr;0.; Finally, the scaling limit of FDSOI MOSFETs is discussed. From the electrostatic perspective 10-nm FDSOI CMOS requires scaling both high-k gate-dielectric and silicon-film thickness to their limits of ∼2 nm. However, silicon-film thickness cannot below ∼3 nm to avoid severe mobility degradation. The scaling limit of FDSOI MOSFETs with a feasible HfO2 gate dielectric is then projected to be ∼17 nm. 10-nm FDSOI CMOS can be achieved only if there is a breakthrough on thin silicon-film mobility.
机译:随着块状CMOS接近其缩放极限,SOI CMOS受到越来越多的关注,并被认为是实现10 nm CMOS的潜在候选者。与体MOSFET相比,完全耗尽的SOI MOSFET具有多个固有优势-低结电容,无基体效应,无需体掺杂来限制栅极耗尽。本文针对超薄绝缘体上硅MOSFET的缩放比例极限,进行了基于二维仿真的全面设计研究。从全耗尽(FD)SOI MOSFET的横向场分析开始,表明,当掩埋氧化物非常厚时,一般的标度长度模型不适用于预测最小可扩展沟道长度Lmin。 FDSOI MOSFET的缩放比例与掩埋氧化物厚度无关。通过逼近硅膜和栅极电介质厚度的设计平面中的恒定L min轮廓,建立了经验Lmin预测方程。最终,Lmin〜5tSi具有高k栅极电介质。还研究了其他因素,例如体掺杂,衬底偏置以及埋入式绝缘体的介电常数(例如)BOX和带隙会影响FDSOI的短通道缩放。针对具有体掺杂和低k埋入式绝缘子的FDSOI器件,开发了经验Lmin预测方程。原则上,通过体掺杂可以将Lmin从〜5t Si提高到〜2tSi。 Lmin也可以从&box = 3.9&egr; 0缩短到&egr;缩短15%。 BOX =&egr; 0 .;最后,讨论了FDSOI MOSFET的比例极限。从静电的角度来看,10纳米FDSOI CMOS需要将高k栅介电层和硅膜的厚度都缩小到2纳米的极限。然而,硅膜厚度不能低于〜3nm,以避免严重的迁移率降低。然后,将具有可行的HfO2栅极电介质的FDSOI MOSFET的缩放极限预计为〜17 nm。只有在薄硅膜迁移率方面取得突破,才能实现10 nm FDSOI CMOS。

著录项

  • 作者

    Lu, Wei-Yuan.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号