首页> 外文学位 >Phenomenological constitutive models for dielectric elastomer membranes for artificial muscle applications.
【24h】

Phenomenological constitutive models for dielectric elastomer membranes for artificial muscle applications.

机译:用于人造肌肉应用的介电弹性体膜的现象学本构模型。

获取原文
获取原文并翻译 | 示例

摘要

The primary goal of this research was to develop a better understanding of the large nonlinear viscoelastic deformation of electroactive elastomers subject to high electric fields. This was achieved through experimental characterizations of dielectric material as well as through the development of analytical and finite element hyperelastic and viscoelastic models. Polyacrylate and silicone (polydimethylsiloxane) dielectric materials were considered in this research. The constitutive equations for the large nonlinear hyperelastic deformation of a dielectric elastomer subjected to an electric field was developed using the Mooney-Rivlin and Ogden material models. The analytical model was validated for an annular actuator configuration. It is known that the polyacrylate VHB 4910 dielectric elastomer has significant viscoelastic properties. Hence, to model large nonlinear viscoelastic deformations, Christensen's viscoelastic theory was used. The analytical viscoelastic material model was validated with experimental results for specimens undergoing uniaxial deformation. Furthermore, nonaxisymmetric actuator configurations with cavities in the shapes of an ellipse and rectangle were investigated using a finite element model.; An analytical model for dielectric elastomers was developed using the theory of large elastic deformations known as hyperelasticity. From these results a better understanding of how a dielectric elastomer annulus deforms was obtained by understanding the effects of varying Maxwell pressures, pre-stretches, and inner radial pressures, and internal stresses. Through the use of the analytical model, it was found that the radial and circumferential stresses transitions from tensile to compressive stresses at a "critical" Maxwell pressure. The significance of this is the determination of the Maxwell pressure that will cause the elastomer to buckle or wrinkle. Also, the model not only showed that prestretching yields the benefit of greater strain, but that there exists an "optimum" pre-stretch range that would yield a larger percent change in radius for a given incremental increase in the effective Maxwell pressure. In addition, a fixed-free annulus with an inner radial pressure, which may simulate a portion of a simple fluid pump, was modeled. It was found that there exists an operating range of the inner radial pressure and effective Maxwell pressures for the device to be physically as well as mathematically viable.; A nonlinear finite deformation viscoelastic model for dielectric elastomer membranes was developed using Christensen's viscoelastic model in the stretch regime 1.5lambda3. This model is applicable for small and large nonlinear deformations. In this research, the Mooney-Rivlin elastic material model was utilized. Uniaxial creep tests were conducted to determine the material constants of an exponentially decaying relaxation modulus. The analytical model validated with experimental results from a constant load uniaxial tensile test. The degree of agreement was a function of the relaxation modulus, g(t). A relaxation modulus was found and correlated very well with experimental data within one time constant of the relaxation modulus. The same relaxation modulus could not predict viscoelastic deformations beyond this time constant. A single relaxation function that characterizes the material over a large time [0,t] domain can be obtained by choosing a more complicated mathematical form of the relaxation modulus.; Furthermore, the general-purpose finite element (FE) software ABAQUS was used to develop an FE model of non-axisymmetric dielectric elastomer actuators undergoing large nonlinear viscoelastic deformations. Rectangular framed actuators with rectangular and elliptical cavities at the center were investigated. Hyperelastic and viscoelastic material properties were determined from uniaxial constant load tensile and creep test data, respectively. The FE model was validated using experimental data
机译:这项研究的主要目的是为了更好地理解承受高电场的电活性弹性体的大的非线性粘弹性变形。这是通过电介质材料的实验表征以及分析和有限元超弹性和粘弹性模型的开发来实现的。这项研究考虑了聚丙烯酸酯和有机硅(聚二甲基硅氧烷)介电材料。使用Mooney-Rivlin和Ogden材料模型建立了介电弹性体在电场作用下的大非线性超弹性变形的本构方程。分析模型已针对环形执行器配置进行了验证。已知聚丙烯酸酯VHB 4910介电弹性体具有显着的粘弹性。因此,为了建模大的非线性粘弹性变形,使用了克里斯滕森的粘弹性理论。对于经历单轴变形的样品,通过实验结果验证了粘弹性材料的分析模型。此外,使用有限元模型研究了具有椭圆和矩形形状的腔体的非轴对称致动器配置。使用称为超弹性的大弹性变形理论开发了介电弹性体的分析模型。从这些结果中,通过了解变化的麦克斯韦压力,预拉伸,内部径向压力和内部应力的影响,可以更好地理解介电弹性体环的变形方式。通过使用分析模型,发现在“临界”麦克斯韦压力下,径向和圆周应力从拉伸应力转变为压缩应力。这样做的意义在于确定将导致弹性体弯曲或起皱的麦克斯韦压力。而且,该模型不仅显示了预拉伸产生的应变更大的好处,而且存在一个“最佳”的预拉伸范围,对于有效麦克斯韦压力的给定增量,该范围将产生较大的半径变化百分比。此外,还模拟了带有内部径向压力的自由固定环,该环可以模拟简单流体泵的一部分。发现存在内部径向压力和有效麦克斯韦压力的操作范围,以使该装置在物理上和数学上都可行。使用Christensen的粘弹性模型在拉伸范围1.5 <λ<3的基础上,建立了介电弹性体膜的非线性有限变形粘弹性模型。该模型适用于大小非线性变形。在这项研究中,利用了Mooney-Rivlin弹性材料模型。进行单轴蠕变测试以确定指数衰减弛豫模量的材料常数。该分析模型通过恒定载荷单轴拉伸试验的实验结果进行了验证。一致性程度是松弛模量g(t)的函数。发现了弛豫模量,并且在弛豫模量的一个时间常数内与实验数据很好地相关。相同的松弛模量不能预测超过该时间常数的粘弹性变形。通过选择弛豫模量的更复杂的数学形式,可以获得在较大的[0,t]域内表征材料的单个弛豫函数。此外,使用通用有限元(FE)软件ABAQUS开发了承受大的非线性粘弹性变形的非轴对称介电弹性体执行器的FE模型。研究了以矩形和椭圆形腔为中心的矩形框架致动器。超弹性和粘弹性材料的性能分别由单轴恒载荷拉伸和蠕变试验数据确定。使用实验数据验证了有限元模型

著录项

  • 作者

    Yang, Eunice Eun-Young.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Applied Mechanics.; Engineering Biomedical.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;生物医学工程;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号