首页> 外文学位 >Deep ultraviolet photoluminescence studies of aluminum-rich aluminum gallium nitride and aluminum nitride epilayers and nanostructures.
【24h】

Deep ultraviolet photoluminescence studies of aluminum-rich aluminum gallium nitride and aluminum nitride epilayers and nanostructures.

机译:富铝氮化铝镓和氮化铝外延层和纳米结构的深紫外光致发光研究。

获取原文
获取原文并翻译 | 示例

摘要

Deep ultraviolet (UV) photoluminescence (PL) spectroscopy has been employed to study optical properties of AlGaN alloys, undoped and doped AlN epilayers and nanostructure AlN photonics crystals (PCs). Using a deep UV laser system with an excitation wave length at 197 nm, continuous wave PL, temperature dependent, and time-resolved PL have been carried out on these AlGaN and AlN epilayers and nanostructures.; We have measured the compositional and temperature dependence of the energy bandgap of AlxGa1-xN alloys covering the entire alloy range of x, 0 ≤ x ≤ 1 and fitted with the Varshni equation. Varshni coefficients, alpha and beta, in AlGaN alloys have a parabolic dependence with alloy concentration x. Based on the experimental data, an empirical relation was thus obtained for the energy gap of AlGaN alloys for the entire alloy concentration and at any temperature below 800 K.; The exciton localization energy in AlxGa1-xN alloys the entire composition range (0 ≤ x ≤ 1) has been measured by fitting the band edge emission peak energy with the Varshni equation. Deviations of the excitonic emission peak energy from the Varshni equation at low temperatures provide directly the exciton localization energies, ELoc in AlGaN alloys. It was found that ELoc increases with x for x ≤ 0.7, and decreases with x for x ≥ 0.8. The relations between the exciton localization energy, the activation energy, and the emission linewidth have been established. It thus provides three different and independent methods to determine the exciton localization energies in AlGaN alloys.; Impurity transitions in AlGaN alloys have also been investigated. Continuous wave (CW) PL spectra of Si and undoped AlGaN alloys reveals groups of impurity transitions that have been assigned to the recombination between shallow donors and an isolated triply charged cation-vacancy (VIII)3-, a doubly charged cation-vacancy-complex (VIII-complex)2- , and a singly charged cation-vacancy-complex (VIII-complex) -1. The energy levels of these deep acceptors in AlxGa 1-xN (0 ≤ x ≤ 1) alloys are pinned to a common energy level in the vacuum. AlGaN alloys predominantly exhibiting the bandedge and (V III-complex)1- transitions possess improved conductivities over those emitting predominantly (VIII)3- and (V III-complex)2- related transitions. These results thus answer the very basic question of high resistivity in Al-rich AlGaN alloys.; Acceptor doped AlGaN alloys have been studied by deep UV PL. A PL emission line at 6.02 eV has been observed at 10 K in Mg-doped AlN. It is due to the recombination of an exciton bound to the neutral Mg acceptor (I1) with a binding energy, Ebx of 40 meV, which indicates large activation energy of the Mg acceptor. The observed large binding energy of the acceptor-bound exciton is consistent with relatively large binding energy of the Mg acceptor in AlN.; With the energy level of 0.51 eV for Mg dopants in AlN, it is interesting and important to study other suitable acceptor dopants for AlN. Growth and optical studies of Zn-doped AlN epilayers has been carried out. The PL spectra of Zn-doped AlN epilayers exhibited two impurity emission lines at 5.40 and 4.50 eV, which were absent in undoped epilayers. They are assigned respectively, to the transitions of free electrons and electrons bound to triply positively charged nitrogen vacancies (0.90 eV deep) to the Zn0 acceptors. It was deduced that the Zn energy level is about 0.74 eV above the valence band edge, which is about 0.23 eV deeper than the Mg energy level in AlN.; Nitrogen vacancies are the compensating defects in acceptor doped AlGaN alloys. A nitrogen vacancy (VN) related emission line was also observed in ion-implanted AlN at 5.87 eV and the energy level of singly charged VN1+ is found at 260 meV below the conduction band. As a consequence of large binding energy of VN 1+ as well as high formation energy, VN1+ in AlN cannot contribute significant n-type conductivity, which i
机译:深紫外(UV)光致发光(PL)光谱已用于研究AlGaN合金,未掺杂和掺杂的AlN外延层以及纳米结构AlN光子晶体(PC)的光学性能。使用深紫外激光系统,激发波长为197 nm,已经在这些AlGaN和AlN外延层和纳米结构上进行了连续波PL,温度依赖性和时间分辨的PL。我们已经测量了AlxGa1-xN合金能带隙的组成和温度依赖性,该能带隙覆盖了x的整个合金范围,0≤x≤1,并符合Varshni方程。 AlGaN合金的Varshni系数α和β与合金浓度x呈抛物线关系。根据实验数据,得出了AlGaN合金在整个合金浓度下以及在低于800 K的任何温度下的能隙的经验关系。 AlxGa1-xN合金在整个组成范围(0≤x≤1)中的激子局域能已通过将带边缘发射峰能量与Varshni方程拟合来测量。低温下Varshni方程引起的激子发射峰能量的偏差直接提供了AlGaN合金中的激子局域能ELoc。发现当x≤0.7时,ELoc随x增加,而当x≥0.8时,eLoc随x减少。已经建立了激子局部化能量,活化能和发射线宽之间的关系。因此,它提供了三种不同且独立的方法来确定AlGaN合金中的激子定位能。还研究了AlGaN合金中的杂质跃迁。硅和未掺杂的AlGaN合金的连续波(CW)PL光谱揭示了已被分配给浅施主与孤立的三重带电阳离子-空位(VIII)3-双电荷的阳离子-空位复合物之间的复合的杂质跃迁组(VIII-络合物)2-和单电荷的阳离子-空位络合物(VIII-络合物)-1。这些深受体在AlxGa 1-xN(0≤x≤1)合金中的能级被固定在真空中的共同能级。与主要发射(VIII)3-和(V III-络合物)2-相关跃迁的那些相比,主要表现出带隙和(V III-络合物)1-跃迁的AlGaN合金具有改善的电导率。因此,这些结果回答了富铝AlGaN合金中高电阻率这一非常基本的问题。受体掺杂的AlGaN合金已通过深UV PL研究。在掺镁的AlN中,在10 K下观察到6.02 eV的PL发射线。这是由于与中性Mg受体(I1)结合的激子的结合能Ebx为40 meV,这表明Mg受体的活化能很大。观察到的受体结合激子的大结合能与AlN中Mg受体的相对大结合能相一致。在AlN中,Mg掺杂剂的能级为0.51 eV,研究其他合适的AlN受体掺杂剂是有趣且重要的。 Zn掺杂的AlN外延层的生长和光学研究已经进行。 Zn掺杂的AlN外延层的PL光谱在5.40和4.50 eV处显示出两条杂质发射线,这是未掺杂的外延层中不存在的。它们分别分配给自由电子和跃迁到Zn0受体的三重带正电的氮空位(0.90 eV深)的电子跃迁。推论出,Zn的能级比价带边缘高约0.74eV,比AlN中的Mg能级深约0.23eV。氮空位是掺杂受体的AlGaN合金的补偿性缺陷。在5.87 eV的离子注入AlN中还观察到了与氮空位(VN)相关的发射谱线,并且在导带以下260 meV处发现了单电荷VN1 +的能级。由于VN 1+具有很高的结合能以及较高的形成能,AlN中的VN1 +不能贡献显着的n型电导率,因此

著录项

  • 作者

    Nepal, Neeraj.;

  • 作者单位

    Kansas State University.;

  • 授予单位 Kansas State University.;
  • 学科 Physics Condensed Matter.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号