首页> 外文学位 >Seedless electrochemical deposition of copper on air-exposed tantalum nitride barriers with ultra-thin adhesion layers.
【24h】

Seedless electrochemical deposition of copper on air-exposed tantalum nitride barriers with ultra-thin adhesion layers.

机译:在具有超薄粘附层的空气暴露的氮化钽阻挡层上进行无核电化学沉积铜。

获取原文
获取原文并翻译 | 示例

摘要

Copper has replaced aluminum for microelectronic applications, bringing the challenges of adapting to a new material with new processing systems. One impetus of changing from aluminum to copper for electronic applications is the lower resistivity which results in higher device speed. It is of the utmost importance to produce electrochemical deposition (ECD) copper with a resistivity as near to the bulk value of 1.7 muOcm as possible to assure maximum device performance [1]. Current technology requires ever decreasing feature geometries and increasing aspect ratios to improve device speed. The challenge in designing smaller devices is in achieving a uniformly continuous, adherent seed layer. As geometry size is reduced and aspect ratios increase, the ability to achieve coverage with physical vapor deposition (PVD) for a copper seed layer becomes impossible. It is projected that PVD seed layers will no longer be viable below the 90 nm node [2]. The development of plating baths for direct electrodeposition of copper onto metal and metal nitride barrier layers for interconnect technology is a primary concern. Basic electrochemical principles as well as specific reasons for the choice of copper bath base and additives are discussed.; This work presented here includes electrochemical data consisting of potentiodynamic experiments, cyclic polarization data, and current density analysis for potentiostatic experiments as well as galvanostatic deposition. Samples were analyzed with electrochemical techniques, field emission scanning electron microscopy (FESEM), Scotch tape adhesion tests, and mass transport experiments utilizing a rotating disk electrode. Atomic Force Microscopy (AFM) has been employed to determine surface roughness changes indicative of the grain structure and surface condition of samples. An initial examination of copper plate has been conducted using transmission electron microscopy. Other experimental work includes a four point probe resistivity study with annealing to optimize copper conditions, XPS to quantify the impurity concentration of copper plate as well as possibility of impurity concentration in Cu deposits. The parameters of bath additive concentration and deposition potentials, that promote good adhesion of copper on barrier layers are one of the most important aspects of this study. This is quantified using four point bend testing to determine adhesion values. Superfilling using ultra thin adhesion promoting layers both an electrochemically deposited, ECD, copper seed and atomic layer deposition (ALD) deposited palladium and ruthenium will be quantified. (Abstract shortened by UMI.)
机译:铜已替代铝用于微电子应用,带来了采用新的处理系统来适应新材料的挑战。在电子应用中从铝变为铜的一个推动力是较低的电阻率,从而导致更高的器件速度。最重要的是生产电阻率尽可能接近1.7μOcm的电化学沉积(ECD)铜,以确保最大的器件性能[1]。当前的技术要求不断减小的特征几何形状和增加的长宽比以提高设备速度。设计较小设备的挑战在于获得均匀连续的粘附种子层。随着几何尺寸的减小和纵横比的增加,用铜种子层进行物理气相沉积(PVD)覆盖的能力变得不再可行。预计PVD种子层在90 nm节点以下将不再可行[2]。对于将铜直接电沉积到用于互连技术的金属和金属氮化物阻挡层上的电镀液的开发是主要关注的问题。讨论了基本的电化学原理以及选择铜浴碱和添加剂的具体原因。本文介绍的这项工作包括电化学数据,包括电势实验,循环极化数据和用于恒电实验以及恒电流沉积的电流密度分析。使用电化学技术,场发射扫描电子显微镜(FESEM),透明胶带附着力测试以及使用旋转圆盘电极的传质实验对样品进行分析。原子力显微镜(AFM)已用于确定指示样品的晶粒结构和表面状况的表面粗糙度变化。已经使用透射电子显微镜对铜板进行了初步检查。其他实验工作包括四点探针电阻率研究,该研究通过退火来优化铜条件,使用XPS量化铜板的杂质浓度以及铜沉积物中杂质浓度的可能性。促进铜在阻挡层上良好附着的镀液添加剂浓度和沉积电位参数是这项研究最重要的方面之一。使用四点弯曲测试确定附着力值,对此进行量化。使用电化学沉积,ECD,铜种子和原子层沉积(ALD)沉积的钯和钌的超薄粘合促进层的超填充将被量化。 (摘要由UMI缩短。)

著录项

  • 作者

    Lay, Nicole Elizabeth.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 243 p.
  • 总页数 243
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号