首页> 外文学位 >Accelerating the scalar multiplication on elliptic curve cryptosystems over prime fields.
【24h】

Accelerating the scalar multiplication on elliptic curve cryptosystems over prime fields.

机译:加速素数域上椭圆曲线密码系统的标量乘法。

获取原文
获取原文并翻译 | 示例

摘要

Elliptic curve cryptography (ECC), independently introduced by Koblitz and Miller in the 80's, has attracted increasing attention in recent years due to its shorter key length requirement in comparison with other public-key cryptosystems such as RSA. Shorter key length means reduced power consumption and computing effort, and less storage requirement, factors that are fundamental in ubiquitous portable devices such as PDAs, cellphones, smartcards, and many others. To that end, a lot of research has been carried out to speed-up and improve ECC implementations, mainly focusing on the most important and time-consuming ECC operation: scalar multiplication.;In this thesis, we focus in optimizing such ECC operation at the point and scalar arithmetic levels, specifically targeting standard curves over prime fields. At the point arithmetic level, we introduce two innovative methodologies to accelerate ECC formulae: the use of new composite operations, which are built on top of basic point doubling and addition operations; and the substitution of field multiplications by squarings and other cheaper operations. These techniques are efficiently exploited, individually or jointly, in several contexts: to accelerate computation of scalar multiplications, and the computation of pre-computed points for window-based scalar multiplications (up to 30% improvement in comparison with previous best method); to speed-up computations of simple side-channel attack (SSCA)-protected implementations using innovative atomic structures (up to 22% improvement in comparison with scalar multiplication using original atomic structures); and to develop parallel formulae for SIMD-based applications, which are able to execute three and four operations simultaneously (up to 72% of improvement in comparison with a sequential scalar multiplication).;At the scalar arithmetic level, we develop new sublinear (in terms of Hamming weight) multibase scalar multiplications based on NAF-like conversion algorithms that are shown to be faster than any previous scalar multiplication method. For instance, proposed multibase scalar multiplications reduce computing times in 10.9% and 25.3% in comparison with traditional NAF for unprotected and SSCA-protected scenarios, respectively. Moreover, our conversion algorithms overcome the problem of converting any integer to multibase representation, solving an open problem that was defined as hard. Thus, our algorithms make the use of multiple bases practical for applications as ECC scalar multiplication for first time.
机译:椭圆曲线密码术(ECC)由Koblitz和Miller在80年代独立引入,由于与其他公共密钥密码系统(例如RSA)相比,其密钥长度要求更短,近年来受到越来越多的关注。较短的密钥长度意味着减少了功耗和计算工作量,并减少了存储需求,这是无处不在的便携式设备(如PDA,手机,智能卡等)中至关重要的因素。为此,已经进行了大量研究来加快和改进ECC的实现,主要集中在最重要和最耗时的ECC运算:标量乘法。点和标量算术级别,特别是针对素数域上的标准曲线。在点算术级别上,我们引入了两种创新的方法来加速ECC公式:使用新的复合运算,该运算基于基本点加倍和加法运算;并通过平方和其他更便宜的运算来代替字段乘法。这些技术可以在几种情况下被单独或联合有效地利用:加速标量乘法的计算,以及基于窗口标量乘法的预计算点的计算(与以前的最佳方法相比,提高了30%);加快使用创新原子结构的简单边通道攻击(SSCA)保护的实现的计​​算速度(与使用原始原子结构的标量乘法相比,提高了22%);并为基于SIMD的应用程序开发并行公式,这些公式可以同时执行三个和四个操作(与顺序标量乘法相比,最多可提高72%)。;在标量算术级别上,我们开发了新的次线性(in汉明权重)基于类似NAF的转换算法的多基标量乘法,被证明比以前的任何标量乘法方法都快。例如,与传统NAF相比,针对不受保护的场景和受SSCA保护的场景,建议的多基数标量乘法分别减少了10.9%和25.3%的计算时间。此外,我们的转换算法克服了将任何整数转换为多基数表示的问题,从而解决了定义为困难的开放问题。因此,我们的算法首次将多个基数实际用于ECC标量乘法。

著录项

  • 作者

    Longa, Patrick.;

  • 作者单位

    University of Ottawa (Canada).;

  • 授予单位 University of Ottawa (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.A.Sc.
  • 年度 2007
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号