首页> 外文学位 >Ultralow power and process variation tolerant VLSI circuit design in nano-scale technologies
【24h】

Ultralow power and process variation tolerant VLSI circuit design in nano-scale technologies

机译:纳米技术中的超低功耗和耐工艺变化VLSI电路设计

获取原文
获取原文并翻译 | 示例

摘要

Efficient power management is becoming increasingly important with the rapid growth of portable, wireless, and battery-operated applications. Lowering the supply voltage reduces the dynamic power quadratically and leakage power exponentially. Hence, supply voltage scaling has drawn major attention for the low power design. This has resulted in circuits operating at a supply voltage lower than the threshold voltage of a transistor [1]. However, the remarkable decrease in power consumption at ultralow voltage operation is achievable at the cost of processor performance and circuit robustness under process and temperature variation. As the supply voltage is lowered the sensitivity of the circuit electrical parameters to process variation increases [2-4]. Further, the circuit with a lowered voltage becomes more vulnerable to the random noise sources, such as thermal noise and soft error, which are not reduced with supply voltage scaling. As a result, the impact of process variation limits the circuit operation at low supply voltages, particularly memories [5,6] as well as logic [8,9]. Further, embedded cache memories are expected to occupy 90% of the total die area of a system-on-a-chip [10,11]. In order to efficiently address these issues we need an integrated circuit-technology-architectural optimization approach to process resilient IC design. This thesis discusses logic and memory design methodologies for ultralow voltage operations with three main chapters: (1) ultralow power VLSI circuit design under process variations; (2) read-error free subthreshold SRAM design for ultralow power applications; (3) gate-interconnect interdependent delay model for different regions of operation.
机译:随着便携式,无线和电池供电应用的快速增长,有效的电源管理变得越来越重要。降低电源电压会成倍减少动态功率,并成倍减少泄漏功率。因此,电源电压缩放已经引起了低功耗设计的极大关注。这导致电路在低于晶体管[1]的阈值电压的电源电压下工作。但是,在处理和温度变化的情况下,以处理器性能和电路鲁棒性为代价,可以实现超低压操作下功耗的显着降低。随着电源电压的降低,电路电参数对工艺变化的敏感性增加[2-4]。此外,电压降低的电路更容易受到随机噪声源的影响,例如热噪声和软误差,这些噪声不会随电源电压缩放而降低。结果,工艺变化的影响限制了电路在低电源电压下的运行,特别是存储器[5,6]和逻辑[8,9]。此外,嵌入式缓存存储器预计将占据片上系统的总管芯面积的90%[10,11]。为了有效解决这些问题,我们需要一种集成电路技术,体系结构优化方法来处理弹性IC设计。本文主要从三章讨论超低压操作的逻辑和存储器设计方法:(1)工艺变化下的超低功耗VLSI电路设计; (2)超低功耗应用的无错误读取亚阈值SRAM设计; (3)门互连的相互依赖延迟模型适用于不同的操作区域。

著录项

  • 作者

    Hwang, Myeong-Eun.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Environmental engineering.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 119 p.
  • 总页数 119
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号