首页> 外文学位 >Heavy metal and radionuclide sequestration by minerals: Spectroscopic investigations and environmental implications.
【24h】

Heavy metal and radionuclide sequestration by minerals: Spectroscopic investigations and environmental implications.

机译:矿物对重金属和放射性核素的螯合:光谱研究和环境影响。

获取原文
获取原文并翻译 | 示例

摘要

The main objective of this dissertation is to investigate the structures and mechanisms of heavy metals and radionuclides interacting with different materials, utilizing complementary techniques such as batch uptake, X-ray diffraction (XRD), thermogravimetric - differential thermal analysis (TG-DTA), direct current plasma-atomic emission spectrometer (DCP-AES), pair distribution function (PDF) analysis of X-ray total scattering and X-ray absorption spectroscopy (XAS). Contaminants of interest include UO22+, Cr 3+ and Zn2+. Sorbent materials studied include aluminum oxide, the common industrial remediation byproduct iron-oxyhydroxide (ferrihydrite), and naturally occurring hydroxylapatite.;The effects of co-existing ligands such as phosphate/arsenate on uranyl sorption on alumina surface were examined over a range of pH and concentration conditions. In the presence of arsenate, uranyl sorption was greatly enhanced at acidic pH ranges, and the amount of enhancement is positively correlated to the initial arsenate and uranyl concentrations. At pH 4-6, U LIII - and As K-edge EXAFS results suggest the formation of surface-sorbed uranyl species as well as uranyl arsenate surface precipitates(s) with a structure similar to trogerite. Uranyl polymeric species or oxyhydroxide precipitate(s) become more important with increasing pH values.;The bulk structure of products of Cr coprecipitation with nanocrystalline iron oxyhydroxide (ferrihydrite) was characterized over a range of Cr concentrations (0--100%). Thermal analysis shows the pure Cr end member has higher water content than ferrihydrite, and show three stages of weight loss probably related to the loss of surface/structural water and hydroxyl groups. Pair distribution function (PDF) analysis shows progressive structural changes and a decrease of coherent domain size with increasing Cr content, from ∼2 nm for ferrihydrite to ∼1 nm for the pure Cr end member, which is likely to have only short-range order and is amorphous. X-ray absorption near edge structure (XANES) analysis suggests both Cr(III) and Fe(III) being the dominant oxidation state, and therefore no redox reactions occur during the Cr incorporation. XANES also shows progressive changes in the local structure around Cr and Fe atoms.;Structure of Zn incorporation into hydroxylapatite (HAP) was characterized using complementary techniques. XAS results demonstrate that the incorporated Zn occurs in tetrahedral coordination in HAP. EXAFS fit results were consistent with theoretical models calculated using density function theory, and suggest the incorporated Zn occupies the Ca2 site with large local distortion. Great similarities of local structure were observed between Zn-doped synthetic and biological apatite samples, suggesting similar mechanism(s) of Zn incorporation into hydroxylapatite.;Effects and mechanisms of pre-treating alumina surfaces with arsenate on uranyl sorption were investigated. Surface modification using inorganic ligands such as arsenate can greatly enhance uranyl sorption under acidic conditions. Positive correlations were observed between U(VI) uptake and the ratio between initial As solution concentration for pretreatment and initial U solution concentration, suggesting the formation of ternary surface complex(es) and/or precipitates. Extended X-ray absorption fine structure (EXAFS) results at both the U LIII- and As K-edges suggest the formation of U-As precipitate(s) with a structure similar to UO2HAsO4 ˙4H2O and likely U polymeric species at high U concentrations. The ratios between surface sorbed uranyl, U-As precipitate(s) and uranyl polymeric species are dependent on the [As]ini/[U]ini ratio and absolute U initial concentration.;Overall, the studies addressed in this dissertation provide new insights into characterization of the mechanisms of heavy metal and radionuclide sequestration by natural or engineered materials in complex systems. The results might also have direct applications for contaminant remediation based on surface sorption or structural incorporation processes. Pretreatment processes may have applications for the design and selection of fill materials for permeable reactive barriers (PRB), which can be used for removing dissolved uranium from groundwater.
机译:本论文的主要目的是利用批处理吸收,X射线衍射(XRD),热重-差热分析(​​TG-DTA)等辅助技术研究重金属和放射性核素与不同材料相互作用的结构和机理。直流等离子体原子发射光谱仪(DCP-AES),X射线总散射和X射线吸收光谱(XAS)的成对分布函数(PDF)分析。感兴趣的污染物包括UO22 +,Cr 3+和Zn2 +。研究的吸附剂材料包括氧化铝,常见的工业修复副产物羟基氧化铁(水铁矿)和天然存在的羟基磷灰石;在pH范围内,研究了共存配体(例如磷酸盐/砷酸盐)对氧化铝表面铀基吸附的影响。和集中条件。在砷酸根的存在下,在酸性pH范围内,铀酰的吸附能力大大增强,且增强量与初始砷酸根和铀酰的浓度呈正相关。在pH 4-6时,U LIII-和作为K边缘的EXAFS结果表明形成了表面吸附的铀酰物质以及砷酸铀酰表面沉淀,形成的结构类似于菱镁矿。随着pH值的增加,聚合物中的铀酰聚合物或羟基氧化物沉淀变得越来越重要。在一定范围的Cr浓度(0--100%)范围内,表征了Cr与纳米结晶羟基氧化铁(三水铁矿)共沉淀的产物的本体结构。热分析表明,纯Cr端基的水含量高于三水铁矿,并显示出重量损失的三个阶段,这可能与表面/结构水和羟基的损失有关。对分布函数(PDF)分析显示,随着Cr含量的增加,结构逐渐发生变化,并且相干畴尺寸减小,从三水铁矿的〜2 nm到纯Cr端基的〜1 nm,这可能只有短程有序并且是无定形的。 X射线吸收近边缘结构(XANES)分析表明Cr(III)和Fe(III)均为主要氧化态,因此在Cr掺入过程中未发生氧化还原反应。 XANES还显示了Cr和Fe原子周围局部结构的逐步变化。;使用互补技术对Zn掺入羟基磷灰石(HAP)中的结构进行了表征。 XAS结果表明,掺入的Zn以四面体配位形式存在于HAP中。 EXAFS拟合结果与使用密度函数理论计算的理论模型一致,表明掺入的Zn占据了Ca2位点,且局部变形较大。掺锌的合成磷灰石样品与生物磷灰石样品之间的局部结构有很大的相似性,这表明锌掺入羟基磷灰石的机理相似。研究了用砷酸盐预处理氧化铝表面对铀基吸附的影响和机理。使用无机配体(如砷酸盐)进行的表面改性可在酸性条件下大大增强铀酰的吸附能力。观察到U(VI)的吸收与用于预处理的初始As溶液浓度与初始U溶液浓度之间的比率呈正相关,表明三元表面复合物和/或沉淀物的形成。在U LIII和As K边缘均产生扩展的X射线吸收精细结构(EXAFS),这表明形成了U-As沉淀,其结构类似于UO2HAsO4 4H2O,并可能在高U下形成U聚合物。浓度。表面吸附的铀酰,U-As沉淀和铀酰聚合物之间的比率取决于[As] ini / [U] ini比率和绝对U初始浓度。总体而言,本文研究的内容提供了新的见解表征复杂系统中天然或工程材料对重金属和放射性核素螯合的机理。该结果还可以直接应用于基于表面吸附或结构结合过程的污染物修复。预处理工艺可用于设计和选择可渗透反应性屏障(PRB)的填充材料,可用于从地下水中去除溶解的铀。

著录项

  • 作者

    Tang, Yuanzhi.;

  • 作者单位

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;
  • 学科 Geochemistry.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 222 p.
  • 总页数 222
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号