首页> 外文学位 >A multi axial bioimplantable MEMS array bone stress sensor.
【24h】

A multi axial bioimplantable MEMS array bone stress sensor.

机译:多轴生物可植入MEMS阵列骨应力传感器。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents the initial steps in the development of a sensor to fully extract multi axial stress components in situ. A minimally invasive MEMS sensor is designed in the Jazz 0.35 mum Bi-CMOS process, and embedded in a mock bone material. Using tensile and bending tests, mechanical loads transmitted into the sensor are measured and correlated with the stiffness of the mock bone material. The specific thesis aims are: (1) to provide the theory and methodology for analysis of the design space using piezoresistive bridges sensors in a textured chip for osteoconduction; (2) to design a textured topography on the chip's surface to enhance cell growth and conduct in-vitro experiments to assess cell attachment; (3) to extract multi-axis stress components from a bone-like material and provide a feasible design for a mm-scale chip; and, (4) to experimentally verify the design theory and approach within mock bone material for a subset of stress components.; The 3 mm x 3 mm multi axial bioimplantable MEMS bone stress sensor comprises an array of piezoresistive sensor "pixels" designed to detect stress across the tissue/sensor interface. The sensors are integrated within a textured surface to accommodate bone growth. From initial research, surface topography with 30-60 mum features was found to be conducive to guiding new cell growth. Finite element analysis led to sensor design for multi-axis stress components extraction within a proposed integrated MEMS fabrication process. The micro-machined sensor was characterized in a material to simulate bone controlled axial and shear loads. Temperature, hysteresis, and repeatability tests are presented to demonstrate the functionality of the sensor.; The long term goal is to use this sensor to monitor the stiffness of regenerating bone or the interfaces between bone and prosthetic implants in order to help guide clinical management. Current technology relies on radiographic imaging to infer bone quality. However, bone stiffness does not necessarily correlate well with image intensity. A practical means to directly measure and quantify biomechanical properties of healing or diseased bone in situ could provide improved and timely information for treatment management options, including drugs, fixation adjustments, or pre-emptive surgical intervention.
机译:本文提出了一种传感器的初步开发步骤,该传感器可在原位完全提取多个轴向应力分量。微创MEMS传感器采用Jazz 0.35微米Bi-CMOS工艺设计,并嵌入到模拟骨骼材料中。使用拉伸和弯曲测试,可以测量传递到传感器中的机械负载,并将其与模拟骨骼材料的刚度关联起来。具体的研究目的是:(1)提供一种在带纹理的芯片中使用压阻电桥传感器进行骨传导的设计空间分析的理论和方法; (2)在芯片表面设计纹理状的形貌,以增强细胞的生长,并进行体外实验以评估细胞的附着; (3)从骨状材料中提取多轴应力分量,并为毫米级切屑提供可行的设计; (4)通过实验验证模拟骨骼材料中应力分量子集的设计理论和方法。 3 mm x 3 mm的多轴向生物可植入MEMS骨应力传感器包括压阻传感器“像素”阵列,该阵列设计用于检测组织/传感器界面上的应力。传感器集成在带纹理的表面内,以适应骨骼生长。通过初步研究,发现具有30-60毫米特征的表面形貌有助于引导新细胞的生长。有限元分析导致了在提出的集成MEMS制造工艺中用于多轴应力分量提取的传感器设计。微机械传感器的特征在于一种材料,可以模拟骨骼控制的轴向和剪切载荷。进行了温度,磁滞和可重复性测试,以证明传感器的功能。长期目标是使用此传感器来监测再生骨骼的刚度或骨骼与假体植入物之间的界面,以帮助指导临床管理。当前的技术依靠放射成像来推断骨骼质量。但是,骨刚度并不一定与图像强度很好地相关。直接测量和量化原位愈合或患病骨的生物力学特性的实用方法可以为治疗管理选择(包括药物,固定调整或先发制人的手术干预)提供及时,完善的信息。

著录项

  • 作者

    Alfaro, J. Fernando.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Engineering Biomedical.; Engineering Electronics and Electrical.; Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 288 p.
  • 总页数 288
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号