首页> 外文学位 >Polarization engineering and approaches for high-performance III-nitride light emitters.
【24h】

Polarization engineering and approaches for high-performance III-nitride light emitters.

机译:高性能III族氮化物发光体的偏振工程和方法。

获取原文
获取原文并翻译 | 示例

摘要

Light emitting diodes (LEDs) have been increasingly integrated into mainstream lighting. In all applications requiring single-colored light, LEDs have outperformed filtered incandescent lamps. However, there are two major challenges. First is the issue of cost. High-performance nitride-based white LEDs cost roughly two orders of magnitude more expensive than incandescent lamps. The second challenge is color rendering---quantified by Color Rendering Index (CRI). Today's nitride white light LEDs still rely on the mixing of blue light from blue InGaN LEDs and yellow phosphor, and the CRI is relatively low. The best white LEDs to date have a CRI of 70--80, in comparison to traditional lamps, which generally have a CRI close to 100, and able to represent the true color of an object. An ideal way to improve the CRI is by mixing the luminescence of primary color LEDs. However, in order to make this approach viable, all the LEDs have to be based on a single materials platform. AlInGaN is the only materials system to date with the potential to fulfill this, since the bandgap of this nitride compound (with varying amount of Al, In, and Ga) can be varied from UV to IR range. There is still a lot of room for improvement in the efficiencies of nitride blue and green LEDs, while nitride-based active region emitting in the red wavelength (lambda ∼ 650-nm) regime is not realizable yet.;In this dissertation, methods to increase internal quantum efficiency by polarization field engineering have been proposed. Two novel structures based on (1) staggered InGaN QW and (2) type-II InGaN-GaNAs QW have been investigated. Staggered InGaN QWs have shown improvement in the photoluminescence, cathodoluminescence, and LED output power, which agree well with numerical model prediction. All materials and devices in this work have been designed, grown and fabricated in-house. For the LED fabrication, a method based on selective area epitaxy---which bypasses dry-etching---has been utilized. In the second approach, theoretical analysis of type-II InGaN-GaNAs has also predicted improvement in the spontaneous recombination rate and optical gain in the visible wavelength regime. Theoretical investigation of efficiency droop, which is important for high-power LEDs, has also been performed based on current injection efficiency analysis in InGaN QW.
机译:发光二极管(LED)已越来越多地集成到主流照明中。在所有需要单色光的应用中,LED的性能都优于过滤后的白炽灯。但是,存在两个主要挑战。首先是成本问题。高性能的基于氮化物的白光LED的价格比白炽灯贵大约两个数量级。第二个挑战是色彩渲染-通过色彩渲染指数(CRI)进行量化。当今的氮化物白光LED仍然依靠来自蓝色InGaN LED和黄色磷光体的蓝光的混合,并且CRI相对较低。迄今为止,最好的白光LED的CRI为70--80,而传统灯的CRI通常接近100,并且能够代表物体的真实颜色。改善CRI的理想方法是混合原色LED的发光。但是,为了使这种方法可行,所有LED必须基于单个材料平台。迄今为止,AlInGaN是唯一有潜力实现这一目标的材料系统,因为这种氮化物(Al,In和Ga的含量不同)的带隙可以从UV到IR范围变化。氮化物蓝光和绿色LED的效率仍有很大的提高空间,而在红色波长(λ〜650 nm)范围内发射的氮化物基有源区尚未实现。已经提出通过极化场工程来提高内部量子效率。研究了基于(1)交错的InGaN QW和(2)II型InGaN-GaNAs QW的两种新颖结构。交错的InGaN QW已显示出光致发光,阴极发光和LED输出功率的改善,这与数值模型预测非常吻合。这项工作中的所有材料和设备都是在内部设计,生长和制造的。对于LED的制造,已经采用了一种基于选择性区域外延的方法-绕过干蚀刻-。在第二种方法中,II型InGaN-GaNAs的理论分析还预测了可见波长范围内的自发复合速率和光学增益的改善。对高功率LED重要的效率下降的理论研究也已经基于InGaN QW中的电流注入效率分析进行了。

著录项

  • 作者

    Arif, Ronald A.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Engineering Electronics and Electrical.;Physics Optics.;Physics Condensed Matter.
  • 学位 P.D.
  • 年度 2008
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号