首页> 外文学位 >Study on the structural properties of the estimating equations arising in the fitting of models for binary longitudinal data.
【24h】

Study on the structural properties of the estimating equations arising in the fitting of models for binary longitudinal data.

机译:研究二进制纵向数据模型拟合中估计方程的结构性质。

获取原文
获取原文并翻译 | 示例

摘要

We investigate modeling issues for binary longitudinal data. Three nested marginal models are considered for describing a binary longitudinal data set arising out of a study done in Ohio observing the wheezing status of children over four years and grouped in those who suffered from maternal smoking and those who did not (Ware (1985)). We demonstrate that when the observations are uncorrelated, the estimating equations for these three models have a common set of equations with a special structure. We show that the same special structure is also present when the observations are correlated. Using this special structure in the estimating equations, we develop new methods to estimate the unknown parameters in these nested models. The initial solutions in these methods are determined naturally from the Estimating Equations and then improved to the final solutions through a series of steps described in the paper. We also study the joint probability models by Fitzmaurice and Laird (1993). We present methods that improve upon and avoid the computational complexity involved in drawing inference on parameters under the joint probability setup. Finally we consider the model selection problem for describing this data. The model selection problem is explored not only in terms of the number of covariates but also the most appropriate association structure between the observations that collected for each subject over a period of time.
机译:我们调查二进制纵向数据的建模问题。考虑使用三个嵌套的边际模型来描述一个二进制纵向数据集,该数据集是由俄亥俄州的一项研究得出的,该研究观察了四年以上儿童的喘息状况,并将其分组为那些吸烟和不吸烟的人(Ware(1985)) 。我们证明,当观测值不相关时,这三个模型的估计方程具有一组特殊的结构公共方程。我们表明,当观测值相关时,也存在相同的特殊结构。使用估计方程中的这种特殊结构,我们开发了新的方法来估计这些嵌套模型中的未知参数。这些方法中的初始解是根据估计方程自然确定的,然后通过本文所述的一系列步骤将其改进为最终解。我们还研究了Fitzmaurice和Laird(1993)的联合概率模型。我们提出的方法可以改善并避免在联合概率设置下对参数进行推论时所涉及的计算复杂性。最后,我们考虑用于描述此数据的模型选择问题。不仅要根据协变量的数量来探讨模型选择问题,而且还要针对一段时间内为每个主题收集的观察值之间最合适的关联结构进行探讨。

著录项

  • 作者

    Chakravartty, Arunava.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Statistics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 统计学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号