【24h】

Optimal hermite collocation solution of a forced convection-diffusion equation

机译:强迫对流扩散方程的最佳厄米配点解

获取原文
获取原文并翻译 | 示例

摘要

We give herein analytical formulas for the solution of the Hermite collocation discretization of a forced steady-state convection-diffusion equation in one spatial dimension and with constant coefficients, defined on a uniform mesh with Dirichlet boundary conditions. The accuracy of the method is enhanced by optimally employing "upstream weighting" of the convective term and optimally sampling the forcing function, avoiding both the "smearing" effect of numerical diffusion and unwanted oscillations, particularly for large Peclet numbers. Computational examples illustrate the efficacy of our approach.
机译:我们在此给出解析公式,用于在一个具有Dirichlet边界条件的均匀网格上定义的,在一个空间维度上具有恒定系数的强制稳态对流扩散方程的Hermite搭配离散化的解决方案。通过优化使用对流项的“上游加权”并优化采样强迫函数,可以避免数值扩散的“拖尾”效应和不必要的振荡,特别是对于大的Peclet数,可以提高方法的准确性。计算示例说明了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号