首页> 外文会议>World Occam and Transputer User Group(WoTUG) Technical Meeting; 20010916-19; Bristol(GB) >Parallel Genetic Algorithms to Find Near Optimal Schedules for Tasks on Multiprocessor Architectures
【24h】

Parallel Genetic Algorithms to Find Near Optimal Schedules for Tasks on Multiprocessor Architectures

机译:并行遗传算法可在多处理器体系结构上找到任务的最佳计划

获取原文
获取原文并翻译 | 示例

摘要

Parallel genetic schedulers (PGS) are applied to a combinatorial optimisation problem, the scheduling of multiple, independent, non-identical tasks. The tasks are functionally partitioned and must be distributed over a multicomputer or multiprocessor system. As each task completes execution, a result message must be communicated. Communication occurs over a shared bus. This problem is known to be NP-complete. The PGS execute on a shared memory multiprocessor system and on a simulated SIMD torus. Schedules produced by the PGS are compared to each other, to those found by an exponential-time optimal branch and bound algorithm, and to those found by a linear-time opportunistic algorithm. The PGS produce extremely accurate schedules very quickly. When the PGS are executed with increasing numbers of processors, near linear speedups are obtained with no decrease in the quality of the resulting schedules.
机译:并行遗传调度程序(PGS)适用于组合优化问题,即多个独立的不同任务的调度。这些任务在功能上进行了分区,必须在多计算机或多处理器系统上进行分配。当每个任务完成执行时,必须传达结果消息。通信通过共享总线进行。已知此问题是NP完全的。 PGS在共享内存多处理器系统和模拟SIMD圆环上执行。将PGS生成的进度表相互比较,与通过指数时间最优分支定界算法找到的进度表进行比较,并与通过线性时间机会算法找到的进度表进行比较。 PGS可以非常迅速地生成极其准确的时间表。当PGS在处理器数量增加的情况下执行时,可获得接近线性的加速,而结果调度的质量不会降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号