【24h】

A Neural System to Robust Nonlinear Optimization Subject to Disjoint and Constrained Sets

机译:具有不相交和约束集的鲁棒非线性优化的神经系统

获取原文
获取原文并翻译 | 示例

摘要

The ability of neural networks to realize some complex nonlinear function makes them attractive for system identification. This paper describes a novel method using artificial neural networks to solve robust parameter estimation problems for nonlinear models with unknown-but-bounded errors and uncertainties. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach.
机译:神经网络实现一些复杂的非线性函数的能力使其对于系统识别具有吸引力。本文介绍了一种新的使用人工神经网络的方法来解决具有未知但有界误差和不确定性的非线性模型的鲁棒参数估计问题。更具体地说,开发了一种改进的Hopfield网络,并使用有效子空间技术来计算其内部参数。这些参数保证网络收敛到平衡点。具有未知但有界误差的鲁棒估计问题的解决方案对应于网络的平衡点。仿真结果作为所提出方法的说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号