【24h】

A UK Corporate Bond Rating Classification Using Probabilistic Neural Networks

机译:基于概率神经网络的英国公司债券评级分类

获取原文
获取原文并翻译 | 示例

摘要

The research attempts to classify bonds issued by the UK companies using Probabilistic Neural Network (PNN), which has not been the algorithm of choice for previous studies with small data sets. The study uses a total sample of 55 UK companies. The neural network was trained by means of five financial ratios. All experiments carried out showed that the PNN was able to classify corporate bonds. The degree of accuracy depends on the choice of a PNN model and the data used to train and test that particular model. When a PNN is trained, a non-linear function is created which is mapped on to the test pattern file. This test pattern file has its independent variables (ratios) evaluated by the different layers of the PNN and the predicted classification output is given based on this nonlinear function. The validation tests that there is no significant difference between the PNN output and random chance are applied. Two out of five models classifying corporate bonds managed to surpass the validation, the higher of these results achieving a 75.47% accuracy in classification (PNN jack-knife model predicting Aa and A bond ratings).
机译:这项研究试图使用概率神经网络(PNN)对英国公司发行的债券进行分类,而对于以前的小数据集研究而言,该算法并不是首选算法。该研究使用了55家英国公司的总样本。通过五个财务比率对神经网络进行了训练。进行的所有实验表明,PNN能够对公司债券进行分类。准确度取决于PNN模型的选择以及用于训练和测试该特定模型的数据。训练PNN时,将创建一个非线性函数,该函数映射到测试图案文件上。该测试模式文件的自变量(比率)由PNN的不同层评估,并且基于此非线性函数给出了预测的分类输出。验证测试表明,在PNN输出和随机机会之间没有显着差异。在对公司债券进行分类的五种模型中,有两种设法超过了验证结果,这些结果中的较高者实现了75.47%的分类准确性(PNN折刀模型可预测Aa和A债券评级)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号