【24h】

Using Constructive Learning in Speaker Verification. A Comparison with Multilayer Perceptron

机译:在说话者验证中使用建构式学习。与多层感知器的比较

获取原文
获取原文并翻译 | 示例

摘要

This work deals with the use of Artificial Neural Networks for the speaker recognition problem. Specifically, we have been using backpropagation Multilayer Perceptron (MLP), with encouraging performance. However, MLPs have several problems in actual applications. One of them is the size of the network: it is impossible to determine a priori the optimal number of hidden layers an the size of each of them. If the number of weights is insufficient, the network is not able to learn the desired function, and if the number of them is too high the network tends to overfit. There are some theoretical and empirical results on this matter, but in practice only "trial and error" is really useful, and each "trial" involves the training of a new network. To deal with the previous problem, we are testing a different approach: a constructive neural network, using a Projection Pursuit Learning algorithm. The advantage of a constructive teaming is that we can add neurons incrementally in the training stage to reach the desired learning error, without having to train a new network, like in MLP. Here we present some preliminary results of the first experiments performed, that are compared with those of MLP.
机译:这项工作涉及人工神经网络用于说话人识别问题。具体而言,我们一直在使用反向传播多层感知器(MLP),并获得令人鼓舞的性能。但是,MLP在实际应用中存在几个问题。其中之一是网络的大小:无法先验地确定隐藏层的最佳数量以及每个网络的大小。如果权重数量不足,则网络将无法学习所需的功能,如果权重数量过多,则网络可能会过度拟合。在此问题上有一些理论和经验结果,但实际上只有“试验和错误”才是真正有用的,并且每个“试验”都涉及对新网络的训练。为了解决先前的问题,我们正在测试另一种方法:使用投影追踪学习算法的构造性神经网络。建设性团队的优势在于,我们可以在训练阶段逐步增加神经元,以达到所需的学习错误,而不必像在MLP中那样训练新的网络。在这里,我们介绍了一些首次实验的初步结果,这些结果与MLP进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号