首页> 外文会议>Workshop on figurative language processing 2018 >Computationally Constructed Concepts: A Machine Learning Approach to Metaphor Interpretation Using Usage-Based Construction Grammatical Cues
【24h】

Computationally Constructed Concepts: A Machine Learning Approach to Metaphor Interpretation Using Usage-Based Construction Grammatical Cues

机译:计算构造的概念:一种基于使用的构造语法提示的机器学习隐喻解释方法

获取原文
获取原文并翻译 | 示例

摘要

The current study seeks to implement a deep learning classification algorithm using argument-structure level representation of metaphoric constructions, for the identification of source domain mappings in metaphoric utterances. It thus builds on previous work in computational metaphor interpretation (Mohler et al. 2014; Shutova 2010; Bolle-gala & Shutova 2013; Hong 2016; Su et al. 2017) while implementing a theoretical framework based off of work in the interface of metaphor and construction grammar (Sullivan 2006, 2007, 2013). The results indicate that it is possible to achieve an accuracy of approximately 80.4% using the proposed method, combining construction grammatical features with a simple deep learning NN. I attribute this increase in accuracy to the use of constructional cues, extracted from the raw text of metaphoric instances.
机译:当前的研究试图使用隐喻构造的论元-结构层表示来实现深度学习分类算法,以识别隐喻话语中的源域映射。因此,它以计算隐喻解释的先前工作为基础(Mohler等人2014; Shutova 2010; Bolle-gala&Shutova 2013; Hong 2016; Su等人2017),同时在隐喻界面中实现了基于工作的理论框架。和建构语法(Sullivan 2006、2007、2013)。结果表明,结合构造语法特征和简单的深度学习神经网络,使用所提出的方法可以达到约80.4%的精度。我将这种准确性的提高归因于从隐喻实例的原始文本中提取的构造提示的使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号