首页> 外文会议>Web technologies and applications >Online Prediction for Forex with an Optimized Experts Selection Model
【24h】

Online Prediction for Forex with an Optimized Experts Selection Model

机译:使用优化的专家选择模型进行外汇在线预测

获取原文
获取原文并翻译 | 示例

摘要

Online prediction is a process to repeatedly predict the next element from a sequence of given previous elements. It has a broad range of applications on various areas, such as medical and finance. The biggest challenge of online prediction is sequence data does not have explicit features, which means it is difficult to remain good predictions. One of popular solution is to make prediction with expert advice, and the challenge is to pick the right experts with minimum cumulative loss. In this article, we use forex prediction as a case study, and propose a model that can select a good set of forex experts by learning a set of previous observed sequences. To achieve better performance, our model not only considers the average mistakes made by experts but also takes the average profit earn by experts into account. We demonstrate the merits of our model on a real major currency pairs data set.
机译:在线预测是从给定的先前元素序列中重复预测下一个元素的过程。它在医疗和金融等各个领域具有广泛的应用。在线预测的最大挑战是序列数据没有明确的特征,这意味着很难保持良好的预测。流行的解决方案之一是根据专家的建议进行预测,而挑战是选择具有最小累积损失的合适专家。在本文中,我们将外汇预测用作案例研究,并提出一个可以通过学习一组先前观察到的序列来选择一组好的外汇专家的模型。为了获得更好的性能,我们的模型不仅考虑了专家的平均错误,还考虑了专家的平均利润。我们在真实的主要货币对数据集上证明了我们模型的优点。

著录项

  • 来源
    《Web technologies and applications》|2016年|371-382|共12页
  • 会议地点 Suzhou(CN)
  • 作者单位

    School of Computer Science, South China Normal University, Guangzhou, China;

    Institute of Computer Technology, Chinese Academy of Sciences, Beijing, China;

    School of Computer Science, South China Normal University, Guangzhou, China;

    School of Computer Science, South China Normal University, Guangzhou, China;

    School of Computer Science, South China Normal University, Guangzhou, China;

    School of Computer Science, South China Normal University, Guangzhou, China;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号