【24h】

Interactive Physical Simulation of Catheter Motion within Mayor Vessel Structures and Cavities for ASD/VSD Treatment

机译:市长血管结构和腔内导管运动的交互式物理模拟,用于ASD / VSD治疗

获取原文
获取原文并翻译 | 示例

摘要

Simulation systems are becoming increasingly essential in medical education. Hereby, capturing the physical behaviour of the real world requires a sophisticated modelling of instruments within the virtual environment. Most models currently used are not capable of user interactive simulations due to the computation of the complex underlying analytical equations. Alternatives are often based on simplifying mass-spring systems, being able to deliver high update rates that come at the cost of less realistic motion. In addition, most techniques are limited to narrow and tubular vessel structures or restrict shape alterations to two degrees of freedom, not allowing instrument deformations like torsion. In contrast, our approach combines high update rates with highly realistic motion and can in addition be used with respect to arbitrary structures like vessels or cavities (e.g. atrium, ventricle) without limiting the degrees of freedom. Based on energy minimization, bending energies and vessel structures are considered as linear elastic elements; energies are evaluated at regularly spaced points on the instrument, while the distance of the points is fixed, i.e. we simulate an articulated structure of joints with fixed connections between them. Arbitrary tissue structures are modeled through adaptive distance fields and are connected by nodes via an undirected graph system. The instrument points are linked to nodes by a system of rules. Energy minimization uses a Quasi Newton method without preconditioning and, hereby, gradients are estimated using a combination of analytical and numerical terms. Results show a high quality in motion simulation when compared to a phantom model. The approach is also robust and fast. Simulating an instrument with 100 joints runs at 100 Hz on a 3 GHz PC.
机译:在医学教育中,仿真系统变得越来越重要。因此,捕获现实世界的物理行为需要在虚拟环境中对仪器进行复杂的建模。由于计算复杂的基本解析方程,当前使用的大多数模型均无法进行用户交互模拟。替代方案通常基于简化的质量弹簧系统,能够提供较高的更新速率,但代价是不那么逼真的运动。另外,大多数技术限于狭窄和管状的血管结构,或将形状改变限制在两个自由度,不允许器械变形,例如扭转。相比之下,我们的方法将高更新率与高度逼真的运动结合在一起,并且还可以在不限制自由度的情况下用于任意结构,例如血管或腔体(例如中庭,心室)。基于能量最小化,弯曲能和容器结构被认为是线性弹性元件。能量是在仪器上规则间隔的点处评估的,而这些点之间的距离是固定的,即我们模拟了关节之间具有固定连接的铰接结构。任意组织结构都通过自适应距离场进行建模,并通过无向图系统由节点连接。仪器点通过规则系统链接到节点。能量最小化使用的是准牛顿法,无需进行预处理,因此,可以使用解析项和数值项的组合来估算梯度。与幻像模型相比,结果显示出运动仿真的高质量。该方法也是健壮且快速的。在3 GHz PC上,模拟具有100个接头的仪器的频率为100 Hz。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号