首页> 外文会议>Virtual Environments, Human-Computer Interfaces and Measurements Systems, 2009. VECIMS '09 >An Artificial Immune Network approach for Pinyin-to-character conversion
【24h】

An Artificial Immune Network approach for Pinyin-to-character conversion

机译:拼音到字符转换的人工免疫网络方法

获取原文

摘要

This paper proposes a novel approach based on artificial immune network for dealing with the task of Pinyin-to-character (PTC) conversion. The researches in recent years have nearly indicated that the sparse data problem and the independent identical distribution (iid.) assumption are two main difficulties of improving the PTC performance, and these two problems widely exist in the supervised learning methods. This paper presents an online learning approach to overcome the above problems. This model has a kind of ability of adaptively adjustment by using the feedback information, and in this model, the discriminative function gives the partial ordering relation of each immune chain so as to implement the partial perception online learning. The experiments show that our PTC conversion method based on the online learning technology can achieve a better performance than the n-gram language model, and this kind of improvement is hardly acquired by the classical supervised learning methods.
机译:本文提出了一种基于人工免疫网络的新方法来处理拼音转字符的任务。近年来的研究几乎表明,稀疏数据问题和独立的均等分布假设是提高PTC性能的两个主要困难,而这两个问题在监督学习方法中普遍存在。本文提出了一种在线学习方法来克服上述问题。该模型具有利用反馈信息进行自适应调整的能力,在该模型中,判别函数给出每个免疫链的偏序关系,从而实现偏知觉在线学习。实验表明,基于在线学习技术的PTC转换方法比n-gram语言模型具有更好的性能,而经典的有监督学习方法很难获得这种改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号