首页> 外文会议>Unmanned/unattended sensors and sensor networks VIII >Adaptive fusion of infrared and visible images in dynamic scene
【24h】

Adaptive fusion of infrared and visible images in dynamic scene

机译:动态场景中红外与可见光图像的自适应融合

获取原文
获取原文并翻译 | 示例

摘要

Multiple modalities sensor fusion has been widely employed in various surveillance and military applications. A variety of image fusion techniques including PCA, wavelet, curvelet and HSV has been proposed in recent years to improve human visual perception for object detection. One of the main challenges for visible and infrared image fusion is to automatically determine an optimal fusion strategy for different input scenes along with an acceptable computational cost. This paper, we propose a fast and adaptive feature selection based image fusion method to obtain high a contrast image from visible and infrared sensors for targets detection. At first, fuzzy c-means clustering is applied on the infrared image to highlight possible hotspot regions, which will be considered as potential targets' locations. After that, the region surrounding the target area is segmented as the background regions. Then image fusion is locally applied on the selected target and background regions by computing different linear combination of color components from registered visible and infrared images. After obtaining different fused images, histogram distributions are computed on these local fusion images as the fusion feature set. The variance ratio which is based on Linear Discriminative Analysis (LDA) measure is employed to sort the feature set and the most discriminative one is selected for the whole image fusion. As the feature selection is performed over time, the process will dynamically determine the most suitable feature for the image fusion in different scenes. Experiment is conducted on the OSU Color-Thermal database, and TNO Human Factor dataset. The fusion results indicate that our proposed method achieved a competitive performance compared with other fusion algorithms at a relatively low computational cost.
机译:多种形式的传感器融合已广泛应用于各种监视和军事应用中。近年来,已提出了多种图像融合技术,包括PCA,小波,curvelet和HSV,以改善用于目标检测的人类视觉感知。可见光和红外图像融合的主要挑战之一是自动确定针对不同输入场景的最佳融合策略以及可接受的计算成本。本文提出了一种基于特征选择的快速自适应图像融合方法,可以从可见光和红外传感器获得高对比度的图像进行目标检测。首先,将模糊c均值聚类应用于红外图像以突出显示可能的热点区域,这些热点区域将被视为潜在目标的位置。之后,将目标区域周围的区域分割为背景区域。然后,通过从配准的可见图像和红外图像计算颜色分量的不同线性组合,将图像融合局部应用于选定的目标区域和背景区域。在获得不同的融合图像之后,在这些局部融合图像上计算直方图分布作为融合特征集。采用基于线性判别分析(LDA)度量的方差比对特征集进行分类,并为整个图像融合选择最有区别的特征集。由于特征选择是随时间执行的,因此该过程将动态确定最适合在不同场景中进行图像融合的特征。实验在OSU彩色热数据库和TNO人为因素数据集上进行。融合结果表明,与其他融合算法相比,我们提出的方法以相对较低的计算成本实现了竞争性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号