首页> 外文会议>UKSim 15th International Conference on Computer Modelling and Simulation >Comparative Study on Hidden Markov Model Versus Support Vector Machine: A Component-Based Method for Better Face Recognition
【24h】

Comparative Study on Hidden Markov Model Versus Support Vector Machine: A Component-Based Method for Better Face Recognition

机译:隐马尔可夫模型与支持向量机的比较研究:一种基于组件的更好人脸识别方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we report a comprehensive study of two well evolved and developed learning algorithms for effective Face Recognition (FR); viz. the Hidden Markov Model (HMM) and Support Vector Machines (SVM). It is evident that, the accuracy of recognition and efficiency in terms of time and speed of a FR system are directly proportional to the competency of the underlying learning algorithms. Here, we propose to compare the two acclaimed method stated above. A component-based approach is adapted to train face images for recognition. Each face image is divided into sub-states for both HMM and SVM algorithm. In attempt to achieve better rates of recognition, all face images are pre-processed and resizing which helps in reducing the overall complexity of the FR system. We run this proposed system against benchmarks accredited by previous researches.
机译:在本文中,我们报告了对有效发展的有效人脸识别(FR)的两种发展良好的学习算法的全面研究;即隐马尔可夫模型(HMM)和支持向量机(SVM)。显然,基于FR系统的时间和速度,识别的准确性和效率与基础学习算法的能力成正比。在这里,我们建议比较上述两种广受赞誉的方法。基于组件的方法适用于训练人脸图像以进行识别。对于HMM和SVM算法,每个人脸图像都分为子状态。为了获得更好的识别率,对所有面部图像进行了预处理和调整大小,这有助于降低FR系统的整体复杂性。我们根据先前研究认可的基准运行此提议的系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号