首页> 外文会议>Typed lambda calculi and applications >Interactive Learning-Based Realizability Interpretation for Heyting Arithmetic with EM_1
【24h】

Interactive Learning-Based Realizability Interpretation for Heyting Arithmetic with EM_1

机译:基于交互式学习的EM_1 Heyting算法的可实现性解释

获取原文
获取原文并翻译 | 示例

摘要

We interpret classical proofs as constructive proofs (with constructive rules for V, E) over a suitable structure N for the language of natural numbers and maps of Godel's system T. We introduce a new Realization semantics we call "Interactive learning-based Realizability", for Heyting Arithmetic plus EM_1 (Excluded middle axiom restricted to Σ_1~0 formulas). Individuals of N evolve with time, and realizers may "interact" with them, by influencing their evolution. We build our semantics over Avigad's fixed point result [1], but the same semantics may be defined over different constructive interpretations of classical arithmetic (in [7], continuations are used). Our notion of realizability extends Kleene's realizability and differs from it only in the atomic case: we interpret atomic realizers as "learning agents".
机译:我们将自然证明解释为针对自然数和戈德尔系统T的图的适当结构N上的构造证明(具有V,E的构造规则)。我们引入了一种新的实现语义,我们将其称为“基于交互学习的可实现性”,用于Heyting Arithmetic加EM_1(不包括限于Σ_1〜0公式的中间公理)。 N的个体随着时间而发展,实现者可以通过影响他们的进化而与他们“互动”。我们在Avigad的不动点结果[1]上构建了语义,但是在经典算术的不同构造解释中可以定义相同的语义(在[7]中使用延续)。我们的可实现性概念扩展了Kleene的可实现性,并且仅在原子案例中与之不同:我们将原子实现者解释为“学习代理”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号