【24h】

MTPGraph: A Data-Driven Approach to Predict Medical Risk Based on Temporal Profile Graph

机译:MTPGraph:一种基于数据的基于时间轮廓图的医疗风险预测方法

获取原文
获取原文并翻译 | 示例

摘要

With the rapid development of information technologies, which facilitates the perfection of healthcare systems, a variety of clinical data is becoming available. The patient Electronic Health Records (EHR) is one of important sources in healthcare data on which conducts personalized medicine. However, it is challenging if the raw EHRs are directly used to conduct related medical prediction due to its heterogeneity, sparsity and the existence of noise. To address this issue, this paper proposes an integrative data driven medical prediction approach called Medical Temporal Profile Graph (MTPGraph). The approach consists of two parts, first of which is a unified representation for each patient raw EHRs, namely patient temporal profile graph. Secondly, based on this representation, an algorithm TRApriori to obtain temporal feature graphs is further developed which is used to reconstruct each patient temporal profiling. The generated coefficient can be efficiently used for executing medical risk prediction. Finally, we validate MTPGraph through two real world clinical scenarios. The experimental results show that the predicted performance of the approach can be improved significantly in both tasks.
机译:随着信息技术的迅速发展,这有助于完善医疗保健系统,各种临床数据正变得可用。病人电子健康记录(EHR)是医疗保健数据中进行个性化医疗的重要来源之一。但是,由于原始EHR由于其异质性,稀疏性和噪声的存在,直接用于进行相关医学预测具有挑战性。为了解决这个问题,本文提出了一种集成的数据驱动的医学预测方法,称为医学时态图(MTPGraph)。该方法包括两个部分,第一部分是每个患者原始EHR的统一表示,即患者时间轮廓图。其次,基于该表示,进一步开发了用于获取时间特征图的算法TRApriori,该算法用于重建每个患者的时间轮廓。所产生的系数可以有效地用于执行医疗风险预测。最后,我们通过两个现实世界的临床场景来验证MTPGraph。实验结果表明,在两种任务中该方法的预测性能都可以得到显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号