首页> 外文会议>TMS/DEVS Symposium on Theory of Modeling amp; Simulation, 2016 Spring Simulation Multi-Conference >Data assimilation in discrete event simulations - a rollback based Sequential Monte Carlo approach
【24h】

Data assimilation in discrete event simulations - a rollback based Sequential Monte Carlo approach

机译:离散事件模拟中的数据同化-基于回滚的顺序蒙特卡洛方法

获取原文
获取原文并翻译 | 示例

摘要

Data assimilation is an analysis technique which aims to incorporate measured observations into a dynamic system model in order to produce accurate estimates of the current state variables of the system. Although data assimilation is conventionally applied in continuous system models, it is also a desired ability for its discrete event counterpart. However, data assimilation has not been well studied in discrete event simulations yet. This paper researches data assimilation problems in discrete event simulations, and proposes a rollback based implementation of the Sequential Monte Carlo (SMC) method - the rollback based SMC method. To evaluate the accuracy of the proposed method, an identical-twin experiment in a discrete event traffic case is carried out and the results are presented and analyzed.
机译:数据同化是一种分析技术,旨在将测得的观测值合并到动态系统模型中,以生成对系统当前状态变量的准确估计。尽管通常将数据同化应用于连续系统模型中,但对于离散事件副本,这也是一种理想的功能。但是,数据吸收在离散事件模拟中还没有得到很好的研究。本文研究离散事件模拟中的数据同化问题,并提出了基于回滚的顺序蒙特卡罗(SMC)方法的实现-基于回滚的SMC方法。为了评估该方法的准确性,在离散事件交通情况下进行了同卵双胞胎实验,并对结果进行了分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号