首页> 外文会议>Three-dimensional image processing (3DIP) and applications >Memory-efficient Belief Propagation for High-Definition Real-Time Stereo Matching systems
【24h】

Memory-efficient Belief Propagation for High-Definition Real-Time Stereo Matching systems

机译:高清晰度实时立体声匹配系统的内存有效信念传播

获取原文
获取原文并翻译 | 示例

摘要

Tele-presence systems will enable participants to feel like they are physically together. In order to improve this feeling, these systems are starting to include depth estimation capabilities. A typical requirement for these systems includes high definition, good quality results and low latency.rnBenchmarks demonstrate that stereo-matching algorithms using Belief Propagation (BP) produce the best results. The execution time of the BP algorithm in a CPU cannot satisfy real-time requirements with high-definition images. GPU-based implementations of BP algorithms are only able to work in real-time with small-medium size images because the traffic with memory limits their applicability.rnThe inherent parallelism of the BP algorithm makes FPGA-based solutions a good choice. However, even though the memory traffic of a commercial FPGA-based ASIC-prototyping board is high, it is still not enough to comply with realtime, high definition and good immersive feeling requirements.rnThe work presented estimates depth maps in less than 40 milliseconds for high-definition images at 30fps with 80 disparity levels. The proposed double BP topology and the new data-cost estimation improve the overall classical BP performance while they reduce the memory traffic by about 21%. Moreover, the adaptive message compression method and message distribution in memory reduce the number of memory accesses by more than 70% with an almost negligible loss of performance. The total memory traffic reduction is about 90%, demonstrating sufficient quality to be classified within the first 40 positions in the Middlebury ranking.
机译:远程呈现系统将使参与者感到自己在物理上在一起。为了改善这种感觉,这些系统开始包括深度估计功能。这些系统的典型要求包括高清晰度,高质量结果和低延迟。rn基准表明使用Belief Propagation(BP)的立体声匹配算法可产生最佳结果。 CPU中BP算法的执行时间无法满足高清图像的实时要求。 BP算法基于GPU的实现只能实时处理中小型图像,因为内存流量限制了它们的适用性。BP算法固有的并行性使基于FPGA的解决方案成为一个不错的选择。然而,即使基于FPGA的商业ASIC原型板的内存流量很高,仍不足以满足实时性,高清晰度和良好的身临其境的要求.rn所提出的工作估计深度图在不到40毫秒的时间内可达到以30帧/秒的视差水平以30 fps拍摄高清图像。拟议的双BP拓扑和新的数据成本估算提高了整体经典BP性能,同时将内存流量减少了约21%。而且,自适应消息压缩方法和消息在内存中的分布将内存访问次数减少了70%以上,而性能损失几乎可以忽略不计。总的内存通信量减少了大约90%,这表明有足够的质量可以分类为Middlebury排名的前40个位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号