【24h】

Feature Extraction of Surface EMG Signal Based on Wavelet Coefficient Entropy

机译:基于小波系数熵的表面肌电信号特征提取

获取原文

摘要

This paper introduces a novel and simple method to extract the general feature of two surface EMG signal patterns: forearm supination (FS) surface EMG signal and forearm pronation (FP) surface EMG signal. The method decomposes surface EMG signal into 16 Frequency bands (FB) by wavelet packet transform (WPT), and then wavelet coefficient entropy (WCE) of two chosen FBs is calculated. The two WCEs were used to distinguish FS surface EMG signals from FP surface EMG signals. The result shows that WCE is an effective method for extracting the feature from surface EMG signal.
机译:本文介绍了一种新颖而简单的方法来提取两个表面肌电信号模式的一般特征:前臂旋后(FS)表面肌电信号和前臂旋前(FP)表面肌电信号。该方法通过小波包变换(WPT)将表面肌电信号分解为16个频段(FB),然后计算出两个选定FB的小波系数熵(WCE)。这两个WCE用于区分FS表面EMG信号和FP表面EMG信号。结果表明,WCE是一种从表面肌电信号中提取特征的有效方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号