【24h】

Atomic-Scale Analysis of Strain Relaxation Mechanisms in Ultra-Thin Metallic Films

机译:超薄金属膜应变弛豫机理的原子尺度分析

获取原文
获取原文并翻译 | 示例

摘要

A comprehensive computational analysis is presented of the atomistic mechanisms of strain relaxation over a wide range of applied biaxial tensile strain in free-standing Cu thin films. The analysis is based on large-scale isothermal-isostrain MD simulations using slab supercells with cylindrical voids normal to the film plane and extending throughout the film thickness. Our analysis has revealed various regimes in the film's mechanical response as the applied strain level increases. Following an elastic response at low strain (< 2%), plastic deformation occurs accompanied by emission of screw dislocations from the void surface and threading dislocations from the film surfaces, in parallel with generation of vacancies due to slip of jogged dislocations. At the lower strain range following the elastic-to-plastic deformation transition (≤ 6%), void growth is the major strain relaxation mechanism, while at higher levels of applied strain (> 8%), a subsequent transition leads to a new plastic deformation regime where void growth plays a negligible role in the film strain relaxation.
机译:进行了全面的计算分析,研究了在独立式Cu薄膜中广泛应用的双轴拉伸应变范围内应变松弛的原子机理。该分析基于大规模的等温-等应变MD模拟,该模拟使用的板状超级电池具有垂直于薄膜平面并延伸到整个薄膜厚度的圆柱形空隙。我们的分析表明,随着施加的应变水平的提高,薄膜的机械响应会出现各种变化。在低应变(<2%)下发生弹性响应后,会发生塑性变形,并伴随着空隙位错的滑动而产生空隙,同时从空隙表面散发出螺丝位错,从薄膜表面散发出螺纹位错。在弹性至塑性变形过渡之后的较低应变范围(≤6%),空隙增长是主要的应变松弛机制,而在较高水平的施加应变(> 8%)下,随后的过渡导致新的塑性空隙生长在薄膜应变松弛中起微不足道作用的变形状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号