首页> 外文会议>Special event on analysis of experimental algorithms >Assessing Algorithm Parameter Importance Using Global Sensitivity Analysis
【24h】

Assessing Algorithm Parameter Importance Using Global Sensitivity Analysis

机译:使用全局灵敏度分析评估算法参数重要性

获取原文

摘要

In general, biologically-inspired multi-objective optimization algorithms comprise several parameters which values have to be selected ahead of running the algorithm. In this paper we describe a global sensitivity analysis framework that enables a better understanding of the effects of parameters on algorithm performance. For this work, we tested NSGA-III and MOEA/D on multi-objective optimization testbeds, undertaking our proposed sensitivity analysis techniques on the relevant metrics, namely Generational Distance, Inverted Generational Distance, and Hypervolume. Experimental results show that both algorithms are most sensitive to the cardinality of the population. In all analyses, two clusters of parameter usually appear: (1) the population size (Pop) and (2) the Crossover Distribution Index, Crossover Probability, Mutation Distribution Index and Mutation Probability; where the first cluster, Pop, is the most important (sensitive) parameter with respect to the others. Choosing the correct population size for the tested algorithms has a significant impact on the solution accuracy and algorithm performance. It was already known how important the population of an evolutionary algorithm was, but it was not known its importance compared to the remaining parameters. The distance between the two clusters shows how crucial the size of the population is, compared to the other parameters. Detailed analysis clearly reveals a hierarchy of parameters: on the one hand the size of the population, on the other the remaining parameters that are always grouped together (in a single cluster) without a possible significant distinction. In fact, the other parameters all have the same importance, a secondary relevance for the performance of the algorithms, something which, to date, has not been observed in the evolutionary algorithm literature. The methodology designed in this paper can be adopted to evaluate the importance of the parameters of any algorithm.
机译:通常,受生物启发的多目标优化算法包括几个参数,必须在运行该算法之前选择值。在本文中,我们描述了一个全局敏感性分析框架,该框架可以更好地了解参数对算法性能的影响。对于这项工作,我们在多目标优化测试平台上测试了NSGA-III和MOEA / D,并在相关度量(即世代距离,反世代距离和超体积)上采用了我们提出的敏感性分析技术。实验结果表明,两种算法对总体的基数最敏感。在所有分析中,通常会出现两个参数簇:(1)种群规模(Pop)和(2)交叉分布指数,交叉概率,突变分布指数和突变概率;其中第一个簇Pop是相对于其他簇而言最重要(敏感)的参数。为测试算法选择正确的总体大小会对解决方案的准确性和算法性能产生重大影响。人们已经知道进化算法的重要性,但是与其他参数相比,它的重要性却未知。与其他参数相比,两个聚类之间的距离表明人口规模有多关键。详细的分析清楚地揭示了参数的层次结构:一方面,人口规模大,另一方面,其余参数始终组合在一起(在一个群集中)而没有可能的显着区别。实际上,所有其他参数都具有相同的重要性,这与算法的性能具有次要的关联性,到目前为止,在进化算法文献中尚未发现这一点。本文设计的方法可用于评估任何算法参数的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号