首页> 外文期刊>International journal for numerical methods in biomedical engineering >Global sensitivity analysis for assessing the parameters importance and setting a stopping criterion in a biomedical inverse problem
【24h】

Global sensitivity analysis for assessing the parameters importance and setting a stopping criterion in a biomedical inverse problem

机译:用于评估参数重要性和在生物医学逆问题中设置停止标准的全局敏感性分析

获取原文
获取原文并翻译 | 示例

摘要

This paper shows how to obtain in addition to the standard deviations available after a data assimilation procedure based on the ensemble Kalman filter, an apportioning of the total uncertainty in the outputs of a patient-specific blood flow model into small portions of uncertainty due to input parameters. Statistical indicators generally used for identifying the importance of numerical parameters, namely the Sobol' first order and total indices, are introduced and discussed. These allow the identification of the importance rank of the different input parameters for the patient-specific blood flow model, as well as the influence of the interactions between these parameters on the model output variance. The results show that knowing the importance rank of the model input parameters during the assimilation procedure is useful to avoid unnecessary over-solving and to find a suitable stopping criterion in clinical situations where faster diagnosis is always requested. Indeed, the work permits to reduce typically by a factor of six the time to solution and most importantly with very limited extra calculation using already available information.
机译:本文展示了如何在基于集合卡尔曼滤波器的数据同化过程之后提供的标准偏差,分配患者特定血流模型的输出中的总不确定性进入小部分不确定性参数。介绍和讨论了统计指标,通常用于识别数值参数的重要性,即索尔诺尔的第一订单和总指标。这些允许识别患者特异性血流模型的不同输入参数的重要性等级,以及这些参数之间的相互作用对模型输出方差的影响。结果表明,在同化过程中了解模型输入参数的重要性等级是有用的,可以避免不必要的过解决,并在始终要求诊断的临床情况下找到合适的停止标准。实际上,工作允许通常将六个时间因子减少到解决方案,最重要的是使用已有信息非常有限的额外计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号