首页> 外文会议>Soft computing in industrial applications : Algorithms, integration, and success stories >Classification of Pressure Drop Devices of Proto Type Fast Breeder Reactor through Seven Layered Feed Forward Neural Network
【24h】

Classification of Pressure Drop Devices of Proto Type Fast Breeder Reactor through Seven Layered Feed Forward Neural Network

机译:七层前馈神经网络对原型快中子增殖堆压降装置的分类

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a method to analyze the quality of pressure drop devices used for flow zoning in Prototype Fast Breeder Reactor (PFBR) by analyzing the occurrence of cavitations. In this work artificial neural network (ANN) has been used to classify the pressure drop devices as cavitating or not cavitating, under given operating conditions. A multi layer feed forward network with resilient back propagation algorithm has been used. The magnitude of root mean square (RMS) of the time signal acquired from an accelerometer installed downstream of various flow zones (totally 15) are fed as feature to the network for training and testing. Once adequately trained, the Neural Network based cavitation detection system would serve as an automated scheme for predicting the incipient cavitation regime and cavitation characteristics of a pressure drop device for a particular flow zone.
机译:本文通过分析空化的发生,提出了一种用于分析原型快速增殖反应堆(PFBR)中用于流动分区的压降装置质量的方法。在这项工作中,人工神经网络(ANN)已被用于在给定的操作条件下将压降装置分类为空化或非空化。已经使用了具有弹性反向传播算法的多层前馈网络。从安装在各个流动区域(总共15个)下游的加速度计获得的时间信号的均方根(RMS)值作为特征馈入网络,以进行训练和测试。一旦经过充分培训,基于神经网络的空化检测系统将作为一种自动化方案,用于预测特定流区的初生空化状态和压降装置的空化特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号