首页> 外文会议>Silicon Front-End Junction Formation-Physics and Technology >Impact of Buffered Layer Growth Conditions on Grown-In Vacancy Concentrations in Molecular Beam Epitaxy Silicon Germanium
【24h】

Impact of Buffered Layer Growth Conditions on Grown-In Vacancy Concentrations in Molecular Beam Epitaxy Silicon Germanium

机译:缓冲层生长条件对分子束外延硅锗中空位浓度的影响

获取原文
获取原文并翻译 | 示例

摘要

Silicon-Germanium (SiGe) has become increasingly attractive to semiconductor manufacturers over the last decade for use in high performance devices. In order to produce thin layers of device grade SiGe with low concentrations of point defects and well-controlled doping profiles, advanced growth and deposition techniques such as molecular beam epitaxy (MBE) are used. One of the key issues in modeling dopant diffusion during subsequent processing is the concentration of grown-in point defects. The incorporation of vacancy clusters and vacancy point defects in 200nm SiGe/Si layers grown by molecular beam epitaxy over different buffer layers has been observed using beam-based positron annihilation spectroscopy. Variables included the type of buffer layer, the growth temperature and growth rate for the buffer, and the growth temperature and growth rate for the top layer. Different growth conditions resulted in different relaxation amounts in the top layer, but in all samples the dislocation density was below 10~6 cm~(-2). Preliminary results indicate a correlation between the size, type and concentration of vacancy defects and the buffer layer growth temperature. At high buffer layer growth temperature of 500℃ the vacancy point defect concentration is below the PAS detectable limit of approximately 10~(15) cm~(-3). As the buffer layer growth is decreased to a minimum value of 300℃, large vacancy clusters are observed in the buffered layer and vacancy point defects are observed in the SiGe film. These results are relevant to the role played by point defects grown-in at temperatures below ~350℃ in modeling dopant diffusion during processing.
机译:在过去的十年中,硅锗(SiGe)对半导体制造商的吸引力越来越高,它们可用于高性能设备。为了生产具有低浓度的点缺陷和良好控制的掺杂轮廓的器件级SiGe薄层,使用了先进的生长和沉积技术,例如分子束外延(MBE)。在后续处理过程中对掺杂剂扩散进行建模的关键问题之一是生长点缺陷的集中。使用基于电子束的正电子an没光谱技术已经观察到通过分子束外延在不同缓冲层上生长的200nm SiGe / Si层中空位簇和空位点缺陷的结合。变量包括缓冲层的类型,缓冲层的生长温度和增长率以及顶层的生长温度和增长率。不同的生长条件导致顶层的弛豫量不同,但所有样品的位错密度均低于10〜6 cm〜(-2)。初步结果表明空位缺陷的大小,类型和浓度与缓冲层生长温度之间存在相关性。在500℃的高缓冲层生长温度下,空位缺陷浓度低于PAS的可检测极限约10〜(15)cm〜(-3)。当缓冲层的生长降低到最小值300℃时,在缓冲层中观察到大的空位簇,并且在SiGe膜中观察到空位点缺陷。这些结果与在低于〜350℃的温度下生长的点缺陷在模拟加工过程中的掺杂剂扩散中所起的作用有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号