首页> 外文会议>Signal processing, sensor fusion, and target recognition XVIII >Receding Horizon Controller Using Particle Swarm Optimization for Closed-Loop Ground Target Surveillance and Tracking
【24h】

Receding Horizon Controller Using Particle Swarm Optimization for Closed-Loop Ground Target Surveillance and Tracking

机译:基于粒子群算法的后视地平线控制器对闭环地面目标的监视与跟踪

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the problem of non-myopic multiple platform trajectory control in a multiple target search and track setting. It presents a centralized receding discrete time horizon controller (RHC) with variable-step look-ahead for motion planning of a heterogeneous ensemble of airborne sensor platforms. The controller operates in a closed feedback loop with a Multiple Hypothesis Tracker (MHT) that fuses the disparate sensor data to produce target declarations and state estimates. The RHC action space for each air vehicle is represented via maneuver automaton with simple motion primitives. The reward function is based on expected Fisher information gain and priority scaling of target tracks and ground regions. A customized Particle Swarm Optimizer (PSO) is developed to handle the resulting non-Markovian, time-varying, multi-modal, and discontinuous reward function. The algorithms were evaluated by simulating ground surveillance scenarios using representative sensors with varying fields of view and typical target densities and motion profiles. Simulation results show improved aggregate target detection, track accuracy, and track maintenance for closed-loop operation as compared with typical open-loop surveillance plans.
机译:本文研究了在多目标搜索和跟踪设置中非近视多平台轨迹控制的问题。它提出了一种集中式后退离散时间水平控制器(RHC),具有可变步距超前功能,用于机载传感器平台异构集合的运动规划。控制器在带有多重假设跟踪器(MHT)的闭合反馈回路中运行,该跟踪器融合了不同的传感器数据以产生目标声明和状态估计。每个飞行器的RHC动作空间通过机动自动机以简单的运动原语表示。奖励函数基于预期的Fisher信息增益以及目标轨道和地面区域的优先级缩放比例。开发了定制的粒子群优化器(PSO),以处理由此产生的非马尔可夫,时变,多模式和不连续的奖励函数。通过使用具有不同视场,典型目标密度和运动曲线的代表性传感器模拟地面监视场景来评估算法。仿真结果表明,与典型的开环监视计划相比,闭环操作的总目标检测,跟踪精度和跟踪维护得到了改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号